En ésta unidad se estudian las aplicaciones de la derivada, enfocadas en las ciencias de ingeniería.
Entre los temas tratados en esta unidad se encuentran los problemas de razones de cambio, el trazo de gráficas de funciones, los problemas de optimización en intervalo cerrado y en intervalo abierto, La regla de L’Hospital, el método de newton y la unidad finaliza con el tema de diferenciales.
Al finalizar el estudio de esta unidad, el estudiante del curso debe ser competente para:
- Resolver problemas de razones de cambio en donde el modelo es aplicado a las ciencias de ingeniería.
- Dibujar la gráfica de funciones encontrando los intervalos donde es creciente o decreciente, los intervalos de concavidad hacia arriba o hacia abajo, los máximos y mínimos y los puntos de inflexión.
- Resolver problemas de optimización en donde la función resulta de modelar una situación relacionada con las ciencias de ingeniería.
- Calcular límites de funciones utilizando la regla de L’Hopital.
- Encontrar en forma aproximada la solución de una ecuación, utilizando el método de Newton.
- Obtener el modelo lineal para estimar el valor de una función, cerca de un valor dado.
- Resolver problemas de diferenciales, en donde el diferencial de la función se utiliza para aproximar la diferencia entre dos valores de la función.
Para acceder al material de apoyo y los problemas resueltos de un tema, seleccione el tema y utilice el enlace correspondiente
Problemas de razones de cambio
Teorema de Rolle y del valor medio
La regla de L’Hopital
Trazo de gráficas con cálculo
Problemas de optimización
Linealización y diferenciales
El método de Newton