UNIVERSIDAD DE SAN CARLOS DE GUATEMALA

FACULTAD DE INGENIERÍA

DEPARTAMENTO DE MATEMÁTICA

CLAVE-107-5-V-1-00-2016

CURSO: Matemática Intermedia 1

SEMESTRE: Primero

CÓDIGO DEL CURSO: 107

TIPO DE EXAMEN: Primera Retrasada

FECHA DE EXAMEN: 24 de Mayo del 2016

RESOLVIÓ EL EXAMEN: Melvin Saúl Calel Otzoy

REVISÓ EL EXAMEN: Inga. Vera Marroquín

DIGITALIZÓ EL EXAMEN: Melvin Saúl Calel Otzoy

COORDINADOR: Ing. José Alfredo González Díaz

24 de mayo de 2016

Primera Retrasada

Temario Único

Tema No. 1 (30 puntos)

Calcule las siguientes integrales:

a)
$$\int \frac{\sqrt{x^2+9}}{x} dx$$

b)
$$\int_0^\infty xe^{-2x}dx$$

c) Utilice la regla de Simpson con n=6 para calcular $\int_0^\pi \sin(x^2) \, dx$

Tema No. 2 (15 puntos)

a) Dibuje la representación gráfica de las curvas $r=2\cos\theta$ y $r=\frac{8}{4+\cos\theta}$

b) Plantee una integral para calcular el área de la región dentro de la primera curva y fuera de la primera.

Tema No. 3 (20 puntos)

a) Determine el radio y el intervalo de convergencia de la serie de potencias:

$$\sum_{n=0}^{\infty} \frac{(-1)^n 2^{n+1} (x-2)^n}{4^n}$$

b) Encuentre una serie de Maclaurin para la función $f(x) = e^{-x^2}$, construyendo primero la serie para la función $f(x) = e^x$

Tema No. 4 (25 puntos)

a) Encuentre las ecuaciones paramétricas de la recta en donde se interesan los planos. (8 puntos)

$$x + 2y - z = 6$$
 & $x - y + 3z = -2$

b) Determine si las rectas se intersectan, si son paralelas a si son oblicuas. Si no se intersectan encuentre la distancia entre ellas. (8 puntos)

$$x = 1 + 2t$$
, $y = 3 - 4t$, $z = -5 + 6t$ & $\frac{x - 3}{-1} = \frac{y - 2}{2} = \frac{z - 1}{-3}$

c) Grafique en \mathbb{R}^3 e identifique las superficies siguientes. (9 puntos)

i)
$$z = r^2$$

i)
$$z = r^2$$
 ii) $\frac{x^2}{9} - \frac{y^2}{4} + \frac{z^2}{9} = 1$ iii) $\rho \sin \emptyset = 3$

iii)
$$\rho \sin \emptyset = 3$$

Tema No. 5 (10 puntos)

Encuentre la superficie de revolución que se obtiene al girar la región limitada por la curva

$$y = \frac{1}{4}x^4 + \frac{1}{8x^2}$$
 y las rectas $x = 1$ && $x = 2$, alrededor del eje y.

SOLUCIÓN DEL EXAMEN

Tema 1: 30 puntos

Calcule las siguientes integrales:

a)
$$\int \frac{\sqrt{x^2+9}}{x} dx$$

No.	Explicación	Operatoria
1.	La integral se resuelve por el método de sustitución trigonométrica, se plantea el triángulo y las sustituciones derivadas del mismo.	3 $\tan \theta = \frac{x}{3} \to x = 3 \tan \theta$ $dx = 3 \sec^2 \theta \ d\theta$ $\sec \theta = \frac{\sqrt{x^2 + 9}}{3} \to \sqrt{x^2 + 9} = 3 \sec \theta$
2.	Se realizan las sustituciones en la integral. Se simplifica la expresión.	$\int \frac{3 \sec \theta 3 \sec^2 \theta d\theta}{3 \tan \theta} = 3 \int \frac{\sec \theta (1 + \tan^2 \theta) d\theta}{\tan \theta}$ $= 3 \int \frac{\sec \theta d\theta}{\tan \theta} + 3 \int \frac{\sec \theta \tan^2 \theta d\theta}{\tan \theta}$ $= 3 \int \csc \theta d\theta + 3 \int \sec \theta \tan \theta d\theta$ $= 3 \ln \csc \theta - \cot \theta + 3 \sec \theta$ $\csc \theta = \frac{\sqrt{x^2 + 9}}{x} \to \theta = \csc^{-1} \frac{\sqrt{x^2 + 9}}{x}$

$\cot \theta = \frac{3}{x} \to \theta = \cot^{-1} \frac{3}{x}$
$\sec \theta = \frac{\sqrt{x^2 + 9}}{3} \to \theta = \sec^{-1} \frac{\sqrt{x^2 + 9}}{3}$
$= 3 Ln \left \csc \csc^{-1} \frac{\sqrt{x^2 + 9}}{x} - \cot \cot^{-1} \frac{3}{x} \right $
$+ 3 \sec \sec^{-1} \frac{\sqrt{x^2 + 9}}{3}$
$= 3 \ln \left \frac{\sqrt{x^2 + 9}}{x} - \frac{3}{x} \right + \sqrt{x^2 + 9}$

R./
$$\int \frac{\sqrt{x^2 + 9}}{x} dx == 3 \ln \left| \frac{\sqrt{x^2 + 9}}{x} - \frac{3}{x} \right| + \sqrt{x^2 + 9} + C$$

b)
$$\int_0^\infty x e^{-2x} dx$$

No.	Explicación	Operatoria
1.	Se aplica el método de integración por partes para resolver la integral. Se plantean las sustituciones para la integral.	$u = x du = dx$ $dv = e^{-2x} dx v = -\frac{1}{2} e^{-2x}$
2.	Se aplica la definición para resolver la integral. $uv - \int v \ du$	$\int xe^{-2x}dx = -\frac{1}{2}xe^{-2x} + \frac{1}{2}\int e^{-2x}dx$ $= -\frac{1}{2}xe^{-2x} - \frac{1}{4}e^{-2x}$
	Se simplifican los términos.	$=-\frac{1}{2}xe^{-x}-\frac{1}{4}e^{-x}$
3.	Como es una integral con un límite al infinito, se trata como un límite en la sustitución, sustituyendo $\infty \to a$.	$\lim_{a \to \infty} \left[\left(\frac{1}{2} a e^{-2a} - \frac{1}{2} (0) \right) - \left(\frac{1}{4} e^{-2a} - \frac{1}{4} e^{-2(0)} \right) \right]$

Se evalúa fundamen	la integral po a	or el teorer	Aplicando L'Hospital al término $\frac{1}{2}ae^{-2a}$ $\lim_{a \to \infty} \frac{1}{2}ae^{-2a} = \frac{1}{2}\lim_{a \to \infty} \frac{a}{e^{2a}} = \frac{\infty}{\infty} \to F.I.$
			$\frac{1}{2}\lim_{a\to\infty}\frac{1}{e^{2a}} = \frac{1}{\infty}\to 0$
			$= (0-0) - \left(0 - \frac{1}{4}\right) = \frac{1}{4}$

R./

$$\int_0^\infty x e^{-2x} dx = \frac{1}{4}$$

c) Utilice la regla de Simpson con n=6 para calcular $\int_0^{\pi} \sin(x^2) dx$

No.	Explicación	Operatoria
1.	Se aplica la definición del método de Simpson:	$Si 0 \le x \le \pi$
	$\int_{a}^{b} f(x) dx \approx S_{n}$	$\Delta x = \frac{\pi - 0}{6} = \frac{\pi}{6}$
	$= \frac{\Delta x}{3} \begin{bmatrix} f(x_0) + 4f(x_1) + 2f(x_2) \\ +4f(x_3) + \dots + 2f(x_{n-2}) \\ +4f(x_{n-1}) + f(x_n) \end{bmatrix}$	$f(x) = \sin x^2$
	$\Delta x = \frac{b-a}{n}$	
2.	Se sustituye desde $x_0=0$, $x_1=\pi/6$, $x_2=2\pi/6$, $x_3=3\pi/6$, $x_4=4\pi/6$, $x_5=5\pi/6$ y $x_6=6\pi/6$ en la ecuación $\sin(x^2)$	$S_6 = \frac{\pi/6}{3} \begin{bmatrix} 0.0000 + 4(0.2707) + 2(0.8897) \\ +4(0.6242) + 2(-0.9474) \\ +4(0.5402) + (-0.4303) \end{bmatrix}$
	Luego se aplica la fórmula para el método de Simpson.	$S_6 = 0.9067$

R./

$$\int_0^{\pi} \sin(x^2) \, dx \approx S_6 = 0.9067$$

Tema 2: 15 puntos.

a) Dibuje la representación gráfica de las curvas $r=2+2\cos\theta$ y $r=\frac{8}{4+\cos\theta}$

No	Explicación	Operatoria	
1.	Para la gráfica de la curva $r=2+2\cos\theta$, se evalúa la función en valores contenidos en $0\leq\theta\leq2\pi$	$\begin{array}{c cccc} \theta & 2 + 2\cos\theta \\ \hline 0 & 4 \\ \hline \pi/4 & 3.41 \\ \hline 2\pi/4 & 2 \\ \hline 3\pi/4 & 0.58 \\ \hline 4\pi/4 & 0 \\ \hline 5\pi/4 & 0.58 \\ \hline 6\pi/4 & 2 \\ \hline 7\pi/4 & 3.41 \\ \hline 8\pi/4 & 4 \\ \end{array}$	
2.	Se grafican los puntos en el plano de coordenadas polares.		

3.	Para la gráfica de la curva $r=\frac{8}{4+\cos\theta'}$ se evalúa la función en valores contenidos en $0\leq\theta\leq2\pi$	θ 0 $\pi/4$ $2\pi/4$ $3\pi/4$ $4\pi/4$ $5\pi/4$ $6\pi/4$ $7\pi/4$ $8\pi/4$	$ \begin{array}{r} 8 \\ \hline 4 + \cos \theta \\ \hline 1.6 \\ 1.69 \\ \hline 2 \\ 2.42 \\ \hline 2.66 \\ \hline 2.42 \\ \hline 2 \\ \hline 1.69 \\ \hline 1.69 \\ \hline 1.6 \end{array} $
4.	Se grafican los puntos en el plano de coordenadas polares.	-2 -1	

Departamento de Matemática Matemática Básica 1

b) Plantee una integral para calcular el área de la región dentro de la curva $2+2\cos\theta$ y fuera de la curva $8/4+\cos\theta$

No.	Explicación	Operatoria
1.	Se grafican ambas curvas en un plano para identificar el área a calcular.	
2.	Se calculan lo puntos de intersección de ambas curvas para plantear la integral que calcule el área indicada.	$\frac{8}{4 + \cos \theta} = 2 + 2 \cos \theta$ $8 = (2 + 2 \cos \theta)(4 + \cos \theta)$ $8 = 8 + 2 \cos \theta + 8 \cos \theta + 2 \cos^2 \theta$ $2 \cos^2 \theta + 10 \cos \theta = 0$ $2 \cos \theta (\cos \theta + 5) = 0$ $2 \cos \theta = 0$ $\theta = \cos^{-1} 0 = \frac{\pi}{2}, \frac{3\pi}{2}$ $\cos t = -5$ $\theta = \cos^{-1} -5 = \nexists$

3. Se aplica la definición para el área en curvas polares.

$$A = \frac{1}{2} \int_{a}^{b} r(\theta)^{2} d\theta$$

El área sombreada, por simetría, es el área dentro de la curva $r=2+2\cos\theta$, en el intervalo $0 \le \theta \le \pi/2$, menos el área de la curva $r=8/4+\cos\theta$ en el mismo intervalo.

$$A = 2 * \frac{1}{2} \int_0^{\frac{\pi}{2}} (2 + \cos \theta)^2 d\theta - 2$$
$$* \frac{1}{2} \int_0^{\pi/2} \left(\frac{8}{4 + \cos \theta} \right)^2 d\theta$$

R./

$$A = \int_0^{\frac{\pi}{2}} (2 + \cos \theta)^2 d\theta - \int_0^{\pi/2} \left(\frac{8}{4 + \cos \theta}\right)^2 d\theta$$

Tema 3: 20 puntos

a) Determine el radio y el intervalo de convergencia de la serie de potencias:

$$\sum_{n=0}^{\infty} \frac{(-1)^n 2^{n+1} (x-2)^n}{4^n}$$

No.	Explicación	Operatoria
1.	Se aplica el criterio de la razón para determinar si la serie converge y su intervalo de convergencia. $\lim_{n\to\infty}\left \frac{a_{n+1}}{a_n}\right $	Sea $\lim_{n \to \infty} \frac{\left \frac{(-1)^{n+1} 2^{n+1+1} (x-2)^{n+1}}{4^{n+1}} \right }{\frac{(-1)^n 2^{n+1} (x-2)^n}{4^n}}$ $= \lim_{n \to \infty} \left \frac{\frac{(-1)(-1)^n 2^n 4 (x-2)^n (x-2)}{4^{n+1}}}{\frac{(-1)^n 2^n 2 (x-2)^n}{4^n}} \right $
		$= \lim_{n \to \infty} \left \frac{(-1)(-1)^n 2^n 4(x-2)^n (x-2) 4^n}{4 * 4^n (-1)^n 2^n 2(x-2)^n} \right $ $= \lim_{n \to \infty} \left \frac{-(x-2)}{2} \right = \frac{-(x-2)}{2} \lim_{n \to \infty} 1$

Departamento de Matemática Matemática Básica 1

La serie converge si $\left \frac{-(x-2)}{2} \right < 1$
$-1 < \frac{x-2}{2} < 1$ -2 < x - 2 < 1
-2 + 2 < x < 2 + 2
0 < x < 4

R./

La Serie Converge

Intervalo de Convergencia $\rightarrow \{0,4\}$

b) Encuentre una serie de Maclaurin para la función $f(x)=e^{-x^2}$, construyendo primero la serie para la función $f(x)=e^x$

No.	Explicación	Operatoria
1.	Se calculan las derivadas y se evalúan en cero, ya que se trata de una serie de Maclaurin.	$f(x) = e^{x} \to f(0) = 1$ $f'(x) = e^{x} \to f'(0) = 1$ $f''(x) = e^{x} \to f''(0) = 1$ $f'''(x) = e^{x} \to f'''(0) = 1$
	Se aplica la definición de la serie de Maclaurin para la función dada.	$e^{x} = \frac{1x^{0}}{0!} + \frac{1x^{1}}{1!} + \frac{1x^{2}}{2!} \frac{1x^{3}}{3!} + \cdots$
	$f(x) = \sum_{n=0}^{\infty} \frac{f^n(0)x^n}{n!}$ $= \frac{f(0)x^0}{0!} + \frac{f'(0)x^1}{1!}$ $+ \frac{f''(0)x^2}{2!} + \dots \frac{f^n(0)x^n}{n}$	$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$
2.	A partir de la serie de potencias para e^x , se hacen los arreglos para llegar a la función e^{-x^2} .	$x \to -x$ $e^{-x} = \sum_{n=0}^{\infty} \frac{(-x)^n}{n!}$

Departamento de Matemática Matemática Básica 1

$$e^{-x^{2}} = \sum_{n=0}^{\infty} \frac{(-x^{2})^{n}}{n!} = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n}}{n!}$$

R./
$$e^{-x^2} = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{n!}$$

Tema 4: 25 puntos

a) Encuentre las ecuaciones paramétricas de la recta en donde se interesan los planos. (8 puntos) $x+2y-z=6 \quad \& \quad x-y+3z=-2$

No.	Explicación	Operatoria
1.	Se aplica el método de Gauss-Jordan para encontrar las ecuaciones de la recta de intersección de los planos dados. Se plantea la matriz aumentada con las dos ecuaciones de los planos.	$\begin{pmatrix} 1 & 2 & -1 & 6 \\ 1 & -1 & 3 & -2 \end{pmatrix}$ $F2 - F1$ $\begin{pmatrix} 1 & 2 & -1 & 6 \\ 0 & -3 & 4 & -8 \end{pmatrix}$ $F2 \rightarrow -\frac{1}{3}F2$ $\begin{pmatrix} 1 & 2 & -1 & 6 \\ 0 & 1 & -4/3 & 8/3 \end{pmatrix}$ $F1 - 2F2$ $\begin{pmatrix} 1 & 0 & 5/3 & 2/3 \\ 0 & 1 & -4/3 & 8/3 \end{pmatrix}$
2.	Se plantean las ecuaciones a partir de la matriz operada.	En la fila 1 $z = t$

Departamento de Matemática Matemática Básica 1

	$y - \frac{4}{3}t = \frac{8}{3}$
	En la fila 2
	$y = \frac{8}{3} + \frac{4}{3}t$
	$x + \frac{5}{3}t = \frac{2}{3}$
	$x = \frac{2}{3} - \frac{5}{3}t$

R./ Ecuaciones paramétricas de la recta de intersección de los planos: $x=\frac{2}{3}+\frac{5}{3}t$ $y=\frac{8}{3}+\frac{4}{3}t$ z=0+t

b) Determine si las rectas se intersectan, si son paralelas a si son oblicuas. Si no se intersectan encuentre la distancia entre ellas. (8 puntos)

$$x = 1 + 2t$$
, $y = 3 - 4t$, $z = -5 + 6t$ & $\frac{x - 3}{-1} = \frac{y - 2}{2} = \frac{z - 1}{-3}$

No.	Explicación	Operatoria
1.	Se comparan los vectores directores para determinar primero si son rectas paralelas. Para que $\overrightarrow{A_1}//\overrightarrow{A_2}$, uno debe ser el múltiplo escalar del otro.	$\overrightarrow{A_1} = \langle 2, -4, 6 \rangle$ $\overrightarrow{A_2} = \langle -1, 2, -3 \rangle$

$\overrightarrow{A_1} = k\overrightarrow{A_2}$

$$\langle 2, -4, 6 \rangle = \langle -k, 2k, -3k \rangle$$

$$2=-k \ \rightarrow \ k=-2$$

$$-4 = 2k \rightarrow k = -2$$
$$6 = -3k \rightarrow k = -2$$

Son paralelos

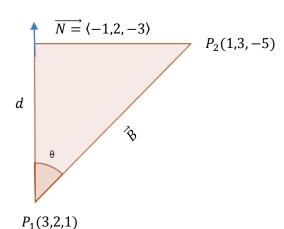
2. Las planos son paralelos, para encontrar la distancia entre los planos, encontramos la distancia de un punto del plano P_2 :

$$\frac{x-3}{-1} = \frac{y-2}{2} = \frac{z-1}{-3}$$

Al plano P_1 :

$$x = 1 + 2t$$
, $y = 3 - 4t$, $z = -5 + 6t$

Se dibuja el esquema para hallar la distancia.



3. Se encuentra la distancia con el esquema planteado.

$$d = Comp_{\vec{N}}\vec{B} = \frac{\vec{B}.\vec{N}}{|\vec{N}|}$$

$$\vec{B} = P_2 - P_1 = \langle 1 - 3, 3 - 2, -5 - 1 \rangle$$

 $\vec{B} = \langle -2, 1, -6 \rangle$

$$d = \left| \frac{\langle -2, 1, -6 \rangle \langle -1, 2, -3 \rangle}{\sqrt{1^2 + 2^2 + 3^2}} \right| = \left| \frac{2 + 2 + 18}{\sqrt{14}} \right|$$

$$d = \frac{22}{\sqrt{14}}$$

R./

Los planos son paralelos

Distancia entre planos
$$\rightarrow d = \frac{22}{\sqrt{14}}$$

c) Grafique en \mathbb{R}^3 e identifique las superficies siguientes. (9 puntos)

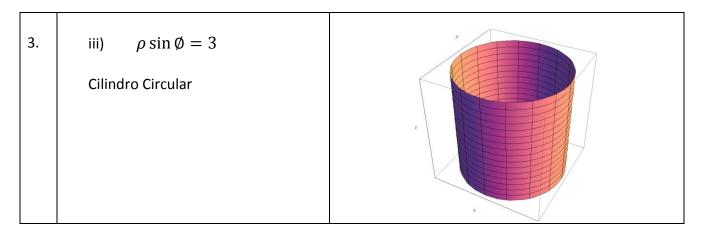
i)
$$z = r^2$$

i)
$$z = r^2$$
 ii) $\frac{x^2}{9} - \frac{y^2}{4} + \frac{z^2}{9} = 1$ iii) $\rho \sin \emptyset = 3$

iii)
$$\rho \sin \emptyset = 3$$

No.	Explicación	Operatoria
1.	i) $z=r^2$ Paraboloide Elíptico	
2.	ii) $\frac{x^2}{9} - \frac{y^2}{4} + \frac{z^2}{9} = 1$ Hiperboloide Elíptico de una hoja	z y

Departamento de Matemática Matemática Básica 1



Tema 5: 10 puntos.

Encuentre la superficie de revolución que se obtiene al girar la región limitada por la curva $y=\frac{1}{4}x^4+\frac{1}{8x^2}$ y las rectas x=1 && x=2, alrededor del eje y.

No.	Explicación	Operatoria
1.	Se grafican las trazas los ejes X,Y para visualizar la superficie de revolución.	33 30 25 25 10 10 03
2.	Se traza el sólido de revolución correspondiente a la gráfica.	$\begin{array}{c} 1.0 \\ -0.5 \\ -0.1 \\ -0.2 \\ -1.0 \\ -0.5 \\ 0.0 \\ 0.5 \\ 1.0 \\ 0.5 \\ 1.0 \\ \end{array}$