UNIVERSIDAD DE SAN CARLOS DE GUATEMALA

FACULTAD DE INGENIERÍA

DEPARTAMENTO DE MATEMÁTICA

CLAVE-107-4-M-2-12-2017

CURSO: Matemática Intermedia 1

SEMESTRE: Vacaciones de Diciembre

CÓDIGO DEL CURSO: 107

TIPO DE EXAMEN: Examen Final

FECHA DE REALIZACIÓN: 25 de mayo de 2018

RESOLVIÓ Y DIGITALIZÓ EL

EXAMEN:

Rodolfo Guzmán Cermeño

TEMARIO "A"

TEMA 1 (10 Pts.)

Indique si la sucesión converge o diverge.

$$a_n = \left(4 - \frac{3}{n}\right)^n$$

TEMA 2 (10 Pts.)

Resuelva

1.
$$\int e^{\sqrt{4x}} dx$$

2.
$$\int \frac{x \, dx}{(x^2+1)^{\frac{3}{2}}}$$

TEMA 3 (10 Pts.)

Encuentre un polinomio de Taylor de grado 4 para la función $f(x) = \sqrt{x}$ centrada en a = 1

TEMA 4 (15 Pts.)

Encuentre el área dentro del círculo $r=2 sen \theta$ y dentro del limacón $r=1-2 sen \theta$.

TEMA 5 (10 Pts.)

Encuentre el área del triángulo de terminado por los puntos (3, 1, 5), (-1, -2, 3) y (1, 2, 1).

TEMA 6 (10 Pts.)

Encuentre las ecuaciones paramétricas de la recta que contiene al punto P(-2,5,3) y es perpendicular al plano -2x + 3y - z = 1

TEMA 7 (10 Pts.)

Determine la ecuación del plano que contiene a las rectas $r(t) = \langle 1+3t, 1-t, 2+t \rangle$ y $r(t) = \langle 4+4s, 2s, 3+s \rangle$

TEMA 8 (10 Pts.)

Identifique y grafique las superficies cuadráticas

a.
$$x^2 + y^2 - z^2 = 1$$

b.
$$-x^2 + y^2 = z^2$$

c.
$$-x^2 + y^2 - z^2 = 9$$

d.
$$z = 2x^2 + 2y^2$$

TEMA 9 (15 Pts.)

En un centro educativo se entregan tres tipos de insumos a sus colaboradores. El insumo A, B y C les permiten trabajar de manera eficiente. En el mes de septiembre se compraron 20, 40 y 50 cajas de los insumos A, B y C respectivamente por un valor de Q 70,000.00. En octubre se compraron 70, 20 y 50 cajas de insumo A, B y C respectivamente por un valor de Q 50,000.00. En octubre se compraron 40, 10 y 70 cajas de insumo A, B y C respectivamente por un valor de Q 82,500.00. ¿Qué precio tiene cada caja de insumo?

SOLUCIÓN DEL EXAMEN

Índice

Tema 1	4
Tema 2	6
Tema 3	9
Tema 4	11
Tema 5	15
Tema 6	17
Tema 7	
Tema 8	21
Tema 9	33

TEMA 1 (10 Pts.)

Indique si la sucesión converge o diverge.

$$a_n = \left(4 - \frac{3}{n}\right)^n$$

No.	Explicación	Operatoria
1.	Calcular el límite $\it L$.	$L = \lim_{n \to \infty} a_n$
2.		$L = \lim_{n \to \infty} \left(4 - \frac{3}{n} \right)^n$
3.	Aplicar logaritmo natural.	$\ln L = \ln \left[\lim_{n \to \infty} \left(4 - \frac{3}{n} \right)^n \right]$
4.	La función de un límite es igual al límite de la función. Si la función es continua.	$\ln L = \lim_{n \to \infty} \left[\ln \left(4 - \frac{3}{n} \right)^n \right]$
5.	Aplicar leyes de logaritmos.	$\ln L = \lim_{n \to \infty} \left[n \cdot \ln \left(4 - \frac{3}{n} \right) \right]$
6.	Tiende a infinito.	$\ln L \to \infty$
7.	Si el logaritmo del límite tiende a infinito, el límite tiende a infinito.	$L o \infty$
8.		diverge

La sucesión diverge.

TEMA 2 (10 Pts.)

Resuelva

1.
$$\int e^{\sqrt{4x}} dx$$

2.
$$\int \frac{x \, dx}{(x^2+1)^{\frac{3}{2}}}$$

 $\int e^{\sqrt{4x}} dx$

No.	Explicación	Operatoria	
1.		$\int e^{\sqrt{4x}} dx$	
2.	Reescribir. $\int e^{2x^{1/2}} dx$		
3.	Sustituir. $du = x^{-1/2} dx$ $x^{1/2} du = dx$ $u = 2x^{1/2}$ $1/2 \ u \ du = dx$	$\int e^{(u)} (1/2 u du)$	
4.	Simplificar.	$\int \frac{1}{2} u e^u du$	
5.	Integración por partes. $m = \frac{1}{2}u \qquad dn = e^{u}du$ $dm = \frac{1}{2}du \qquad n = e^{u}$	$\frac{1}{2}u\cdot e^u - \int e^u\cdot \frac{1}{2}du$	

Departamento de Matemática Matemática Intermedia 1

6.	Integrar.	$\frac{1}{2}ue^u - \frac{1}{2}e^u + C$
7.	Regresar a variable original.	$\frac{1}{2}(2x^{1/2})e^{(2x^{1/2})} - \frac{1}{2}e^{(2x^{1/2})} + C$
8.	Simplificar.	$\frac{1}{2}e^{2\sqrt{x}}(2\sqrt{x}-1)+C$

$$\int e^{\sqrt{4x}} dx = \frac{1}{2} e^{2\sqrt{x}} (2\sqrt{x} - 1) + C$$

2.

$$\int \frac{x \, dx}{(x^2 + 1)^{\frac{3}{2}}}$$

No.	Explicación	Operatoria
1.		$\int \frac{x \ dx}{(x^2+1)^{\frac{3}{2}}}$
2.	Sustituir. $u = x^2 + 1 \qquad du = 2xdx$	$\int \frac{1/2 \ du}{(u)^{3/2}}$
3.	Simplificar.	$\int \frac{1}{2} u^{-3/2} du$
4.	Integrar.	$\frac{1}{2}\left[\left(-\frac{2}{1}\right)u^{-1/2}\right] + C$
5.	Simplificar.	$-u^{-1/2} + C$
6.	Regresar a variable original.	$-(x^2+1)^{-\frac{1}{2}}+C$

Departamento de Matemática Matemática Intermedia 1

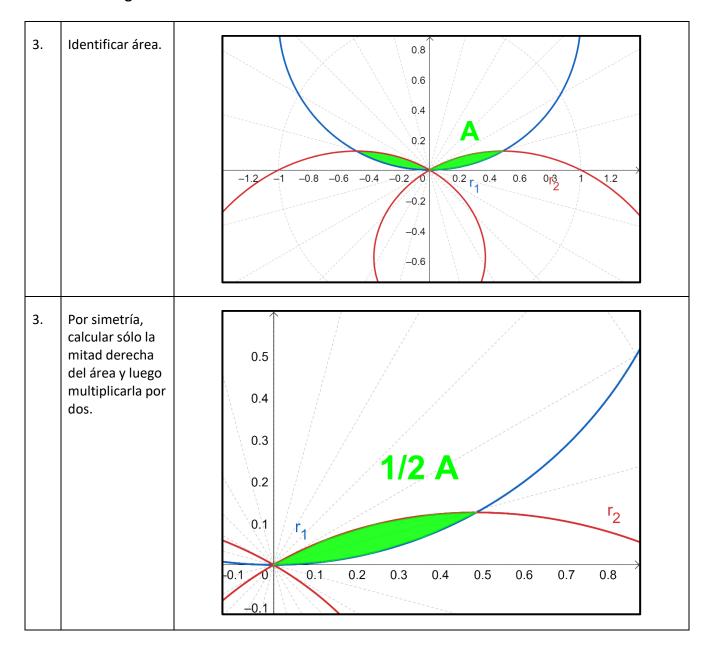
$$\int \frac{x \, dx}{(x^2+1)^{\frac{3}{2}}} = -(x^2+1)^{-\frac{1}{2}} + C$$

TEMA 3 (10 Pts.)

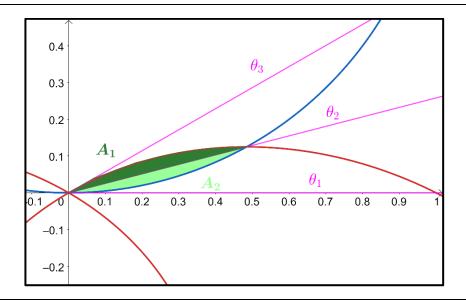
Encuentre un polinomio de Taylor de grado 4 para la función $f(x) = \sqrt{x}$ centrada en a = 1

No.	Explicación	Operatoria				
1.	Fórmula de un polinomio de Taylor.	$P_{n}(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^{k}$				
2.	Identificar datos.				$n = 4$ $a = 1$ $(x) = \sqrt{x}$	
3.	Sustituir en fórmula.	$P_4(x) = \sum_{k=0}^4 \frac{f^{(k)}(1)}{k!} (x-1)^k$				
3.	Tabular sumandos de la		k	k !	$f^{(k)}(x)$	$f^{(k)}(1)$
	sumatoria.		0	1	x ^{1/2}	1
			1	1	$1/2 x^{-1/2}$	1/2
			2	2	$-1/4 x^{-3/2}$	-1/4
			3	6	$3/8 x^{-5/2}$	3/8
			4	24	$-15/16 x^{-7/2}$	-15/19

Departamento de Matemática Matemática Intermedia 1


4.	Desarrollar sumatoria.	$P_4(x) = \frac{1}{1}(x-1)^0$ $+ \frac{1/2}{1}(x-1)^1$ $+ \frac{-1/4}{2}(x-1)^2$ $+ \frac{3/8}{6}(x-1)^3$ $+ \frac{-15/16}{24}(x-1)^4$
5.	Simplificar.	$P_4(x) = 1 + \frac{1}{2}(x-1) - \frac{1}{8}(x-1)^2 + \frac{1}{16}(x-1)^3 - \frac{5}{128}(x-1)^4$

$$P_4(x) = 1 + \frac{1}{2}(x - 1) - \frac{1}{8}(x - 1)^2 + \frac{1}{16}(x - 1)^3 - \frac{5}{128}(x - 1)^4$$


TEMA 4 (15 Pts.)

Encuentre el área dentro del círculo $r=2 \ sen \ \theta$ y dentro del limacón $r=1-2 \ sen \ \theta$.

No.	Explicación	Operatoria
1.	Fórmula de área en polares.	$A = \frac{1}{2} \int_{\alpha}^{\beta} r^2 d\theta$
2.	Graficar.	2.5 2.5 1.5 0.5 0.5 1.5 2 2.5 3 -0.5 -1.5 -2 -2.5 -3

4.	Dividir área en
	dos.

$$A_1 = \int_{\theta_1}^{\theta_2} r_1^2 d\theta$$

$$A_2 = \int_{\theta_2}^{\theta_3} r_2^2 d\theta$$

$$r_1 = 2 \sin \theta$$

$$r_2 = 1 - 2\sin\theta$$

$$r_1 = 0$$
$$2\sin\theta_1 = 0$$

$$\theta_1 = 0$$

$$r_2 = r_1$$
$$1 - 2\sin\theta_2 = 2\sin\theta_2$$

$$1 = 4\sin\theta_2$$

$$\theta_2 = \sin^{-1} 1/4$$

$$\theta_2 \approx 0.25$$

$$r_2 = 0$$

$$1 - 2\sin\theta_3 = 0$$

$$\theta_3 = \sin^{-1} 1/2$$

$$\theta_3 \approx 0.52$$

Departamento de Matemática Matemática Intermedia 1

10.	Sustituir valores en fórmulas.	$A_1 = \int_0^{0.25} (2\sin\theta)^2 d\theta \qquad \qquad A_2 = \int_{0.25}^{0.52} (1 - 2\sin\theta)^2 d\theta$
11.	Expandir.	$A_1 = \int_0^{0.25} 4\sin^2\theta \ d\theta \qquad \qquad A_2 = \int_{0.25}^{0.52} (1 - 4\sin\theta + 4\sin^2\theta) \ d\theta$
12.	Sustituir con identidades trigonométricas.	$A_1 = \int_0^{0.25} (2 - 2\cos 2\theta) d\theta \qquad A_2 = \int_{0.25}^{0.52} (1 - 4\sin \theta + 2 - 2\cos 2\theta) d\theta$
13.	Integrar.	$A_1 = [2\theta - \sin 2\theta]_0^{0.25} \qquad A_2 = [\theta + 4\cos \theta + 2\theta - \sin \theta]_{0.25}^{0.52}$
14.	Valuar.	$A_1 = 0.02$ $A_2 = 0.15$
15.	Sumar áreas y aplicar simetría.	$A = 2(A_1 + A_2)$
16.		A = 2(0.02 + 0.15) = 0.34

$$\acute{A}rea=0.34$$

TEMA 5 (10 Pts.)

Encuentre el área del triángulo de terminado por los puntos (3, 1, 5), (-1, -2, 3) y (1, 2, 1).

No.	Explicación	Operatoria
1.	Fórmula del área de un triángulo.	
2.	Nombrar puntos.	$P_{1} = (3,1,5)$ $P_{2} = (-1,-2,3)$ $P_{3} = (1,2,1)$
3.	Calcular distancia entre dos de los puntos.	$D_{12} = \sqrt{(3 - (-1))^2 + (1 - (-2))^2 + (5 - 3)^2} \approx 5.385$
4.	La medida de la base es igual a esa distancia.	base = $D_{12} \approx 5.385$
5.	Identificar dos vectores que salgan de uno de los extremos de la base.	$\vec{V}_{12} = \langle -1 - 3, -2 - 1, 3 - 5 \rangle = \langle -4, -3, -2 \rangle$ $\vec{V}_{13} = \langle 1 - 3, 2 - 1, 1 - 5 \rangle = \langle -2, 1, -4 \rangle$
6.	Calcular su producto punto.	$\vec{V}_{12} \cdot \vec{V}_{13} = (-4)(-2) + (-3)(1) + (-2)(-4) = 13$
7.	Calcular su magnitud.	$\vec{V}_{12} = D_{12} \approx 5.385$ $\vec{V}_{13} = \sqrt{(-2)^2 + (1)^2 + (-4)^2} \approx 4.58$

Departamento de Matemática Matemática Intermedia 1

8.	Calcular el ángulo entre los vectores usando la fórmula del producto punto.	$\vec{V}_{12} \cdot \vec{V}_{13} = \vec{V}_{12} \vec{V}_{13} \cos \theta_{213}$ $\theta_{213} = \cos^{-1} \left[\frac{\vec{V}_{12} \cdot \vec{V}_{13}}{ \vec{V}_{12} \vec{V}_{13} } \right] \approx \cos^{-1} \left[\frac{(13)}{(5.385)(4.58)} \right] \approx 58.2^{\circ}$
9.	La altura es igual a la componente de \vec{V}_{13} perpendicular a \vec{V}_{12} .	altura = $ \vec{V}_{13} \sin \theta_{213}$
10.	Sustituir valores.	altura ≈ (4.58) sin 58.2° ≈ 3.89
11.	Fórmula del área.	$ \text{Área} = \frac{1}{2} \cdot base \cdot altura $
12.	Sustituir valores.	$ Área = \frac{1}{2} \cdot 5.385 \cdot 3.89 \approx 10.47 $

$$\acute{\mathbf{A}}\mathbf{rea} = \mathbf{10.47}$$

TEMA 6 (10 Pts.)

Encuentre las ecuaciones paramétricas de la recta que contiene al punto P(-2,5,3) y es perpendicular al plano -2x + 3y - z = 1

No.	Explicación	Oper	ratoria
1.	Forma general de las ecuaciones paramétricas de una recta.	$Recta = \begin{cases} 2 \\ 2 \end{cases}$	$x = a t + x_0$ $y = b t + y_0$ $z = c t + z_0$
2.	Las constantes son iguales a las componentes de cualquier punto sobre la recta.	$(x_0, y_0, z_0) =$	P = (-2, 5, 3)
3.	Identificar vector normal al plano.	-2x + 3y - z = 1	Ecuación del Plano
		$\vec{n} = < -2$	2,3,-1>
4.	Calcular vector unitario.	$\hat{n} = \frac{\vec{n}}{ \vec{n} } = \frac{\langle -2, 3, -1 \rangle}{(-2)^2 + (3)^2 +$	$\frac{2}{(-1)^2} \approx <-0.53, 0.8, -0.27>$
5.	Los términos dependientes son iguales a las componentes de cualquier vector unitario sobre la recta.	$< a$, b , $c > = \hat{n} = <$	
6.	Sustituir valores en ecuaciones.	$Recta = \begin{cases} x = 0 \\ y = 0 \\ z = 0 \end{cases}$	(-0.53) t + (-2) = (0.8) t + (5) (-0.27) t + (3)

Departamento de Matemática Matemática Intermedia 1

$$Recta = \begin{cases} x = -0.53 \ t - 2 \\ y = 0.8 \ t + 5 \\ z = -0.27 \ t + 3 \end{cases}$$

TEMA 7 (10 Pts.)

Determine la ecuación del plano que contiene a las rectas $r(t) = \langle 1+3t, 1-t, 2+t \rangle$ y $r(t) = \langle 4+4s, 2s, 3+s \rangle$

No.	Explicación	Operatoria
1.	Identificar rectas.	$r_1(t) = \langle 1 + 3t, 1 - t, 2 + t \rangle$ $r_2(t) = \langle 4 + 4s, 2s, 3 + s \rangle$
2.	Identificar vectores directores.	$\overrightarrow{r_1} = \langle 3, -1, 1 \rangle$ $\overrightarrow{r_2} = \langle 4, 2, 1 \rangle$
3.	Calcular producto cruz.	$ \overrightarrow{r_1} \times \overrightarrow{r_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} & & \hat{i} & \hat{j} \\ 3 & -1 & 1 & & 3 & -1 \\ 4 & 2 & 1 & & 4 & 2 \end{vmatrix} \overrightarrow{r_1} \times \overrightarrow{r_2} = (-\hat{i} + 4\hat{j} + 6\hat{k}) - (2\hat{i} + 3\hat{j} - 4\hat{k}) \overrightarrow{r_1} \times \overrightarrow{r_2} = -3\hat{i} + 1\hat{j} + 10\hat{k} \overrightarrow{r_1} \times \overrightarrow{r_2} = \langle -3, 1, 10 \rangle $
4.	Ecuación general de un plano.	Ax + By + Cz = D
5.	Los términos dependientes de la ecuación forman el vector normal.	$\vec{n} = \langle A, B, C \rangle$
6.	El producto cruz de las rectas es un vector normal al plano.	$\overrightarrow{r_1} imes \overrightarrow{r_2} = \langle -3 $, 1 , $ 10\rangle = \vec{n}$
7.	Sustituir en ecuación.	-3x + y + 10z = D
8.	Tomar un punto de una recta.	$r_1(0) = (1, 1, 2)$

Departamento de Matemática Matemática Intermedia 1

9.	Valuar en ecuación del plano.	-3(1) + (1) + 10(2) = D
10.	Resolver para D	D=16
11.	Sustituir en ecuación del plano.	-3x + y + 10z = (16)

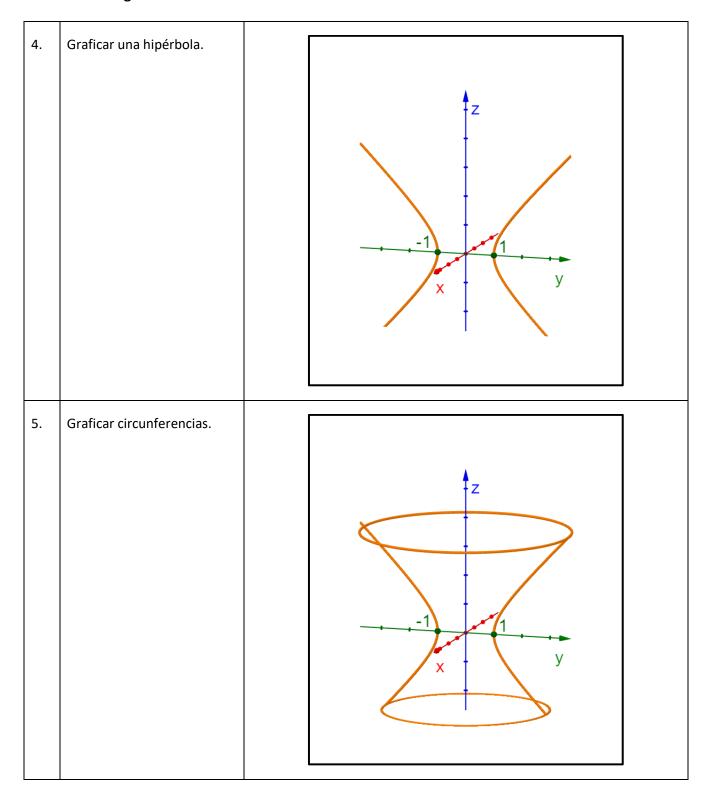
$$-3x + y + 10z = 16$$

TEMA 8 (10 Pts.)

Identifique y grafique las superficies cuadráticas

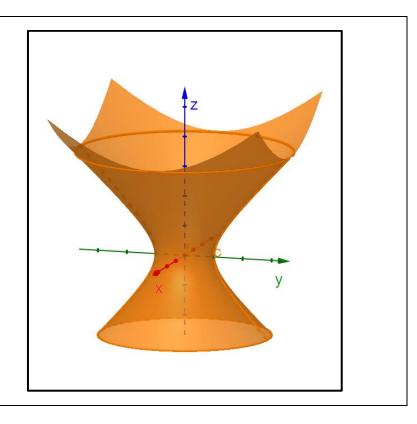
a.
$$x^2 + y^2 - z^2 = 1$$

b.
$$-x^2 + y^2 = z^2$$

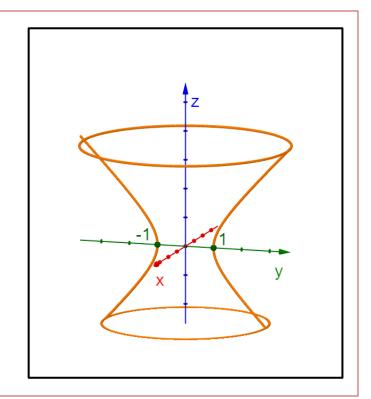

c.
$$-x^2 + y^2 - z^2 = 9$$

d. $z = 2x^2 + 2y^2$

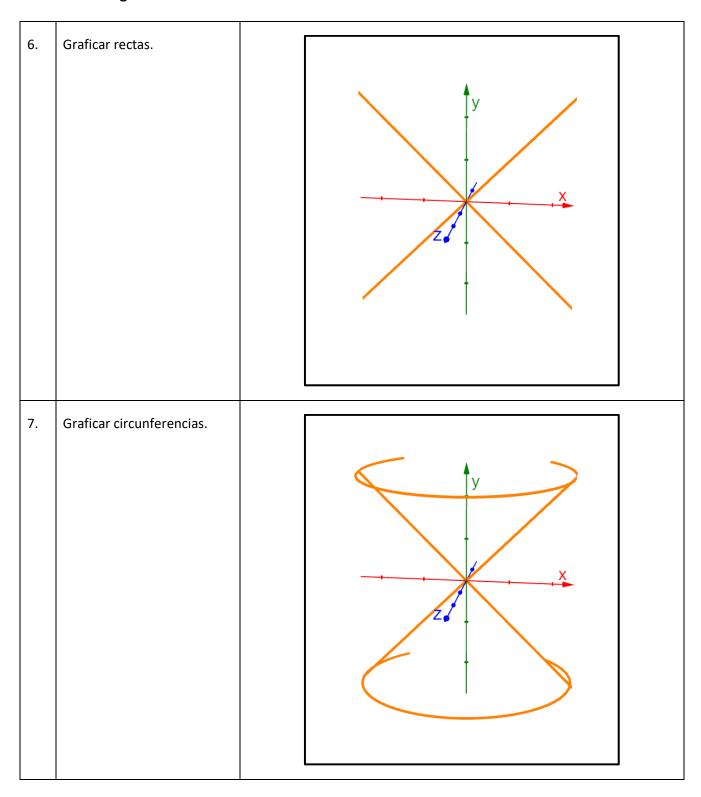
d.
$$z = 2x^2 + 2y^2$$


Inciso a.

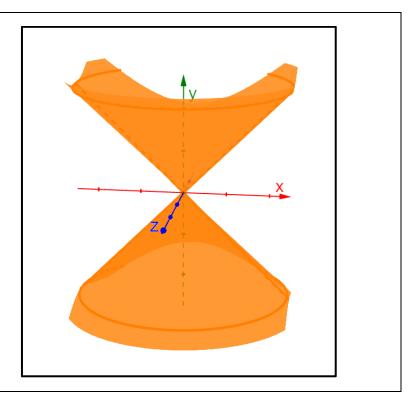
$$x^2 + y^2 - z^2 = 1$$

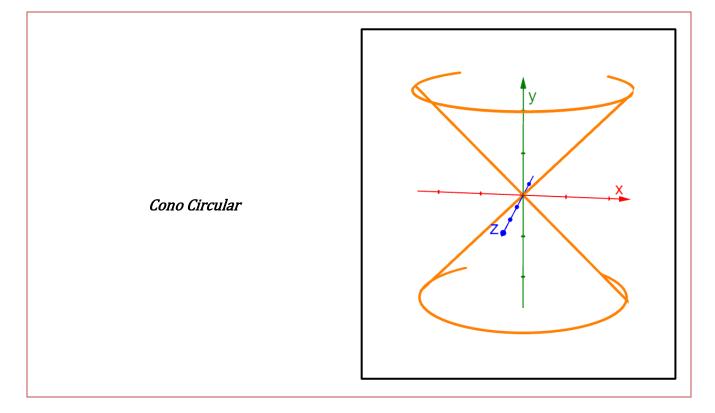

No.	Explicación	Operatoria
1.	Analizar plano $y z$	Si $x = 0$ entonces $y^2 - z^2 = 1$ Hipérbola en y
2.	Analizar plano $x z$	Si $y = 0$ entonces $x^2 - z^2 = 1$ Hipérbola en x
3.	Analizar secciones perpendiculares a z	Si $z = cte$ entonces $x^2 + y^2 = cte$ Circunferencias
4.	Identificar superficie. Un hiperboloide está formado por hipérbolas que comparten un semieje. Cuando comparten el semieje imaginario, se le llama de una hoja.	Es un hiperboloide de una hoja .

6. En un software para graficar se verá así.

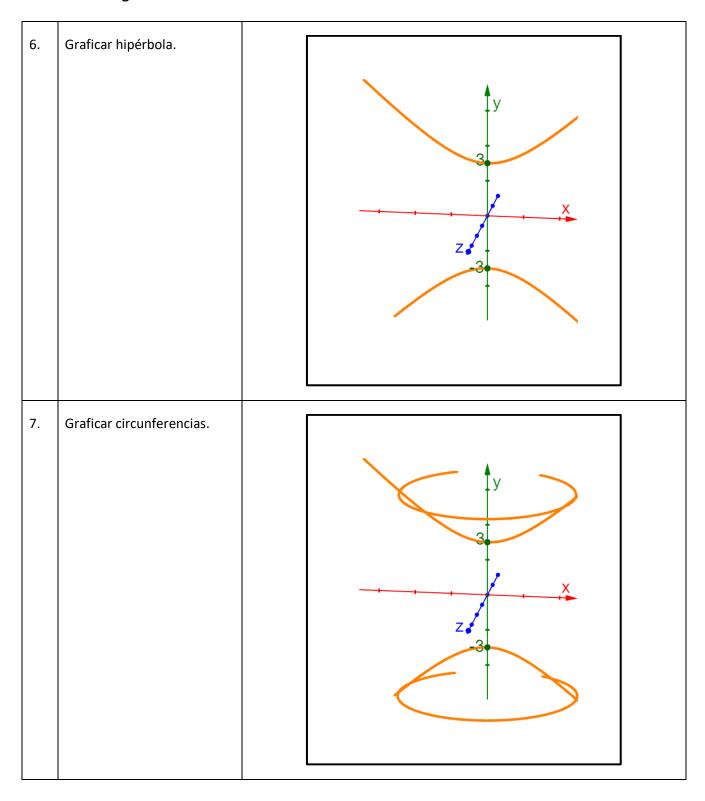


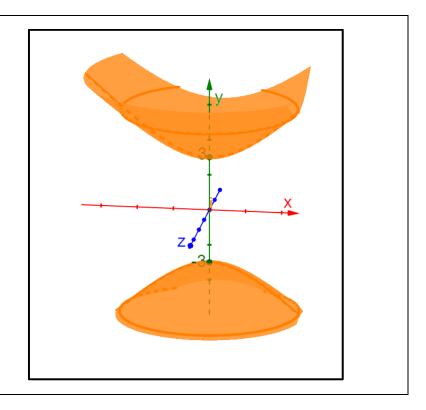
Hiperboloide de una hoja

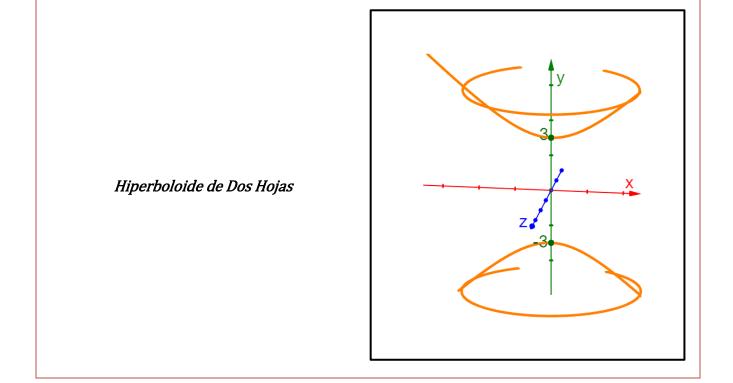



Inciso b.
$$-x^2 + y^2 = z^2$$

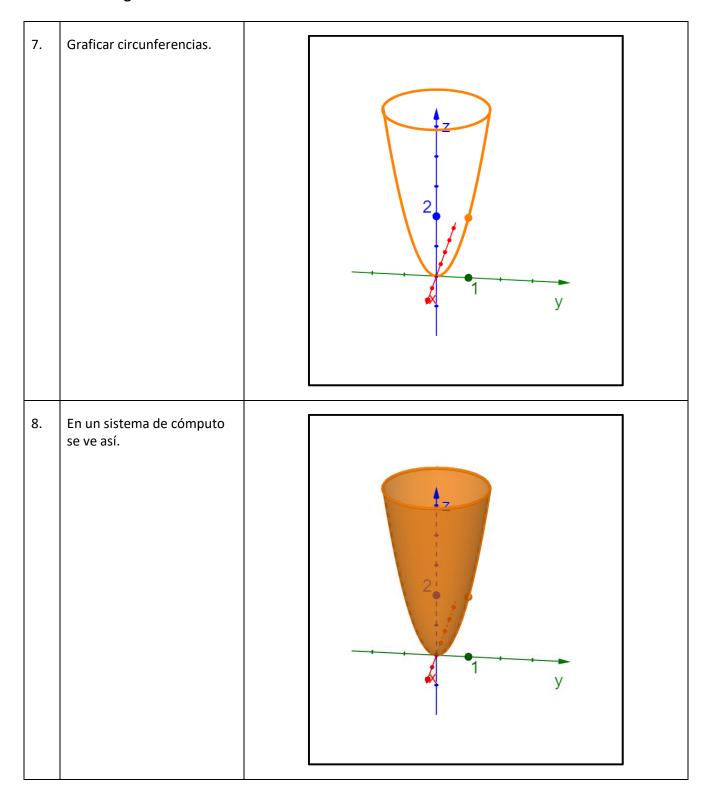
No.	Explicación	Operatoria	
1.	Reescribir ecuación para facilitar el análisis.	$-x^{2} + y^{2} = z^{2}$ $-x^{2} - z^{2} = -y^{2}$ $x^{2} + z^{2} = y^{2}$	
2.	Analizar plano x y	Si $z = 0$ entonces $x^2 = y^2 \rightarrow \begin{cases} x = y \\ -x = y \end{cases}$ Dos rectas simétricas	
3.	Analizar plano y z	Si $x = 0$ entonces $z^2 = y^2 \rightarrow \begin{cases} z = y \\ -z = y \end{cases}$ Dos rectas simétricas	
4.	Analizar secciones perpendiculares a <i>y</i>	Si $y = cte$ entonces $x^2 + z^2 = cte$ Circunferencias	
5.	Identificar superficie. Un cono circular está formado por circunferencias con centro en el mismo eje y dibujadas sobre rectas simétricas.	Es un cono circular .	

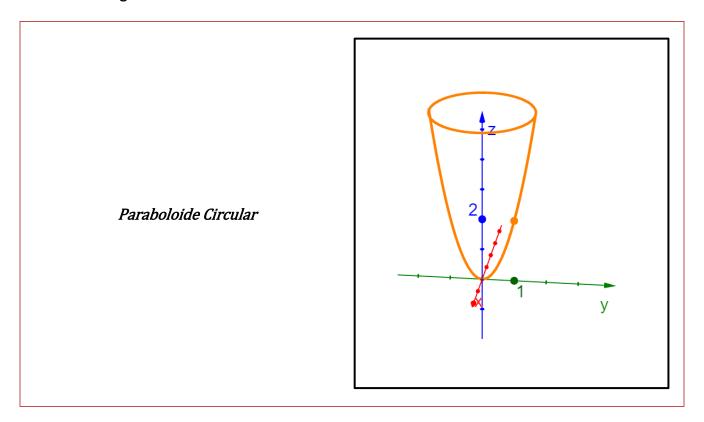

8. En un sistema de cómputo se ve así.




Inciso c.
$$-x^2 + y^2 - z^2 = 9$$

No.	Explicación	Operatoria
1.	Reescribir ecuación para facilitar el análisis.	$-x^{2} + y^{2} - z^{2} = 9$ $y^{2} - x^{2} - z^{2} = 9$ $\frac{y^{2}}{3^{2}} - \frac{x^{2}}{3^{2}} - \frac{z^{2}}{3^{2}} = 1$
2.	Analizar plano x y	Si $z = 0$ entonces $\frac{y^2}{3^2} - \frac{x^2}{3^2} = 1$ Hipérbola en y
3.	Analizar plano y $ z $	Si $x = 0$ entonces $\frac{y^2}{3^2} - \frac{z^2}{3^2} = 1$ Hipérbola en y
4.	Analizar secciones perpendiculares a <i>y</i>	Si $y = cte$ entonces $x^2 + z^2 = cte$ Circunferencias
5.	Un hiperboloide está formado por hipérbolas que comparten un semieje. Cuando comparten el semieje imaginario, se le llama de dos hojas.	Es un hiperboloide de dos hojas .


8. En un sistema de cómputo se ve así.



Inciso d.
$$z = 2x^2 + 2y^2$$

No.	Explicación				Operatoria	
1.	Analizar plano $y z$	Si	x = 0	entonces	$z = 2y^2$	Parábola
3.	Analizar plano $x z$	Si	y = 0	entonces	$z = 2x^2$	Parábola
4.	Analizar secciones perpendiculares a z	Si	z = cte	entonces	$cte = x^2 + z^2$	Circunferencias
5.	Identificar superficie. Un paraboloide circular está formado por circunferencias que comparten el mismo eje y están limitadas por parábolas.			Es un pa	ıraboloide circular.	
6.	Graficar parábola.			2	Z // / / / / / / / / / / / / / / / / /	

TEMA 9 (15 Pts.)

En un centro educativo se entregan tres tipos de insumos a sus colaboradores. El insumo A, B y C les permiten trabajar de manera eficiente. En el mes de septiembre se compraron 20, 40 y 50 cajas de los insumos A, B y C respectivamente por un valor de Q 70,000.00. En octubre se compraron 70, 20 y 50 cajas de insumo A, B y C respectivamente por un valor de Q 50,000.00. En octubre se compraron 40, 10 y 70 cajas de insumo A, B y C respectivamente por un valor de Q 82,500.00. ¿Qué precio tiene cada caja de insumo?

No.	Explicación	Operatoria
1.	Identificar variables.	$P_A = precio\ del\ insumo\ A$ $P_B = precio\ del\ insumo\ B$ $P_C = precio\ del\ insumo\ C$
2.	Identificar ecuaciones.	Primera compra $20P_A + 40P_B + 50P_C = 70,000$ Segunda compra $70P_A + 20P_B + 50P_C = 50,000$ Tercera Compra $40P_A + 10P_B + 70P_C = 82,500$
3.	Escribir en forma matricial.	20 40 50 70000 70 20 50 50000 40 10 70 82500
4.	÷ 10	2 4 5 7000 7 2 5 5000 4 1 7 8250
5.	1/2 F ₁	1 2 2.5 3500 7 2 5 5000 4 1 7 8250
6.	$F_2 - 7 F_1$ $F_3 - 4 F_1$	$ \begin{vmatrix} 1 & 2 & 2.5 & 3500 \\ 0 & -12 & -12.5 & -19500 \\ 0 & -7 & -3 & -5750 \end{vmatrix} $

Departamento de Matemática Matemática Intermedia 1

7.	-1/12 F ₁	1 2 2.5 3500 0 1 1.04 1625 0 -7 -3 -5750
8.	$F_1 - 2 F_2$ $F_3 + 7 F_2$	1 0 0.41 250 0 1 1.04 1625 0 0 4.29 5625
9.	1/4.29 F ₁	1 0 0.42 250 0 1 1.04 1625 0 0 1 1310
10.	$F_1 - 0.42 F_3$ $F_2 - 1.04 F_3$	1 0 0 -296 0 1 0 260 0 0 1 1311
11.	Escribir en forma algebraica.	$P_A = -296$ $P_B = 260$ $P_C = 1311$
12.	Analizar.	El sistema no tiene solución.

No existe una combinación de precios posible.

~~Fin de la Clave~~