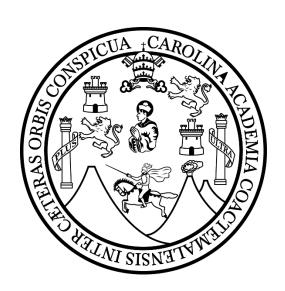
UNIVERSIDAD DE SAN CARLOS FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE 103-3-M-1-06-2017



CURSO:	Matemática Básica 2	
SEMESTRE:	Primero	
CÓDIGO DEL CURSO:	103	
TIPO DE EXAMEN:	Tercer parcial	
FECHA DE EXAMEN:	Junio del 2017	
PERSONA QUE ELABORÓ LA	María José Alburez García	
CLAVE:	Mai la Jose Albui ez dai cia	
PERSONA QUE REVISÓ LA CLAVE:	Ing. Miguel Castillo	

TERCER EXAMEN PARCIAL

TEMA No. 1: (20 puntos)

a. Utilice el límite de una suma de Riemann para evaluar la integral definida de:

 $f(x) = 1 + x^2$ en el intervalo [2,4]

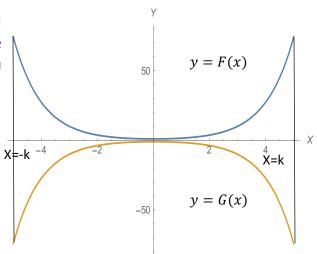
b. Utilice el Teorema fundamental del Cálculo para evaluar la integral definida en el inciso (a).

TEMA No. 2: (25 puntos)

Hasta una exactitud de 5 cifras decimales, utilice el método de Newton con X₀=4, para hallar el valor de la constante k>o, tal que el área (mostrada en la figura), limitada por las gráficas de:

$$F(x) = \frac{e^x + e^{-x}}{2}; \ G(x) = -\left(\frac{e^x + e^{-x}}{2}\right);$$
$$x = -k; \ x = k$$

Tenga un área de 16k cm².



TEMA No. 3: (25 puntos)

Utilice reglas de integración para evaluar:

a.
$$\int x^2 \sqrt{x-1} \, dx$$

b.
$$\int \frac{5x \, dx}{x^2 + 4x + 20}$$

b.
$$\int \frac{5x \, dx}{x^2 + 4x + 20}$$
 c. Hallar $\frac{dy}{dx} \, si: y = \int_{1/x}^{x^3} \theta sen\theta \, d\theta$

TEMA No. 4: (30 puntos)

Sea R la región limitada por las gráficas de:

$$y = \sqrt{x+5}$$
 $y = \sqrt{5-x}$ $y = 1 - \frac{x^2}{25}$

Plantee una integral y resuélvala para calcular el volumen del sólido obtenido al rotar R alrededor de la recta x=5.

TEMA 1

a. Utilice el límite de una suma de Riemann para evaluar la integral definida de: $f(x)=1+x^2\ en\ el\ intervalo\ [2,4]$

#	Descripción	Operación
1.	Se encuentran las expresiones para Δx y x_k .	$\Delta x = \frac{4-2}{n} = \frac{2}{n}$ $x_k = 2 + \frac{(4-2)k}{n} = 2 + \frac{2}{n}k$
2.	Se plantea el límite de la suma de Riemann.	$\lim_{n \to \infty} \sum_{k=1}^{n} f(x_k) \Delta x = \left[1 + \left(2 + \frac{2k}{n} \right)^2 \right] \left(\frac{2}{n} \right) =$ $\left[1 + \left(4 + \frac{8k}{n} + \frac{4k^2}{n^2} \right) \right] \left(\frac{2}{n} \right) =$ $\left(5 + \frac{8k}{n} + \frac{4k^2}{n^2} \right) \left(\frac{2}{n} \right)$
3.	Se simplifica.	$\left(5 + \frac{8k}{n} + \frac{4k^2}{n^2}\right) \left(\frac{2}{n}\right) =$ $\left(5n + \frac{8n(n+1)}{2n} + \frac{4n(n+1)(2n+1)}{6n^2}\right) \left(\frac{2}{n}\right) =$ $\frac{10}{n} + \frac{16k}{n^2} + \frac{8k^2}{n^3} =$ $\frac{10}{n}(n) + \frac{16}{n^2} \left(\frac{n(n+1)}{2}\right) + \frac{8}{n^3} \left(\frac{n(2n+1)(n+1)}{6}\right) =$ $10 + \frac{16n}{2n} + \frac{8}{n} + \frac{8}{n^2} \left(\frac{2n^3 + 3n + 1}{6}\right) =$ $10 + 8 + \frac{8}{n} + \frac{16n^2}{6n^2} + \frac{3(8)n}{6n^2} + \frac{8}{6n^2} =$ $\lim_{n \to \infty} \sum_{k=1}^{n} 10 + 8 + \frac{8}{n} + \frac{8}{3} + \frac{4}{n} + \frac{4}{3n^2} =$ $\lim_{n \to \infty} \sum_{k=1}^{n} 10 + 8 + \frac{8}{n} + \frac{8}{3} + \frac{4}{n} + \frac{4}{3n^2} =$

La integral definida de $f(x) = 1 + x^2$ en el intervalo [2,4] tiene un valor de $\frac{62}{3}u^2$.

b. Utilice el Teorema fundamental del Cálculo para evaluar la integral definida en el inciso (a).

#	Descripción	Operación
1.	Se plantea la integral y se evalúa.	$\int_{2}^{4} (1+x^{2}) dx =$
		$\left[x + \frac{x^3}{3}\right]_2^4 = \left(4 + \frac{(4)^3}{3}\right) - \left(2 + \frac{(2)^3}{3}\right)$
2.	Se simplifica.	$\int_{2}^{4} (1+x^2) dx = \frac{62}{3} u^2$

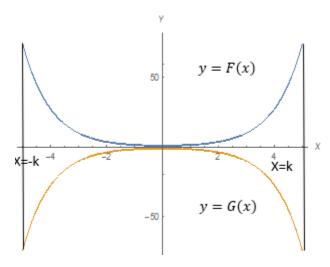
La integral definida de $f(x) = 1 + x^2$ en el intervalo [2,4] tiene un valor de $\frac{62}{3}u^2$.

TEMA 2

Hasta una exactitud de 5 cifras decimales, utilice el método de Newton con X_0 =4, para hallar el valor de la constante k>0, tal que el área (mostrada en la figura), limitada por las gráficas de:

$$F(x) = \frac{e^{x} + e^{-x}}{2}; \quad G(x) = -\left(\frac{e^{x} + e^{-x}}{2}\right);$$
$$x = -k; \quad x = k$$

Tenga un área de 16k cm².



#	Descripción	Operación	
1.	Se plantea la integral del área entre las curvas y se iguala a 16k.	$A = \int_{a}^{b} f(x) dx$ $A = 2 \int_{0}^{k} \left[\frac{e^{x} + e^{-x}}{2} - \left(-\frac{e^{x} + e^{-x}}{2} \right) \right] dx = 16k$ $A = 2 \int_{0}^{k} (e^{x} + e^{-x}) dx = 16k$ $A = 2 \int_{0}^{k} e^{x} dx + 2 \int_{0}^{k} e^{-x} dx = 16k$ $A = \left[2e^{x} - 2e^{-x} \right]_{0}^{k} = 16k$ $(2e^{k} - 2e^{-k}) - (2e^{0} - 2e^{-0}) = 16k$ $2e^{k} - 2e^{-k} = 16k$ $2e^{k} - 2e^{-k} - 16k = 0$	
2.	Se deriva la función resultante.	$f(k) = 2e^{k} - 2e^{-k} - 16k$ $f'(k) = 2e^{k} + 2e^{-k} - 16$	
3.	Se empieza a iterar con la ecuación de Newton.	$x_{n+1} = x_n - \frac{f(x)}{f'(x)}$ $x_1 = 4 - \frac{2e^4 - 2e^{-4} - 16(4)}{2e^4 + 2e^{-4} - 16} = 4$	
4.	Se itera hasta tener el número de decimales deseado.	$x_2 = 3.51563$ $x_3 = 3.30203$ $x_4 = 3.26482$ $x_5 = 3.26380$	
	El valor de la constante k es 3.26380.		

TEMA 3

a.
$$\int x^2 \sqrt{x-1} \, dx$$

#	Descripción	Operación
1.	Se define la variable a	u = x - 1
	reemplazar y se deriva.	x = u + 1
		du = dx
2.	Se realiza la sustitución.	$\int (u+1)^2 (u)^{\frac{1}{2}} du =$
		$\int (u^2 + 2u + 1)(u)^{\frac{1}{2}} du =$

$$\int \left(u^{\frac{5}{2}} + 2u^{\frac{3}{2}} + u^{\frac{1}{2}}\right) du = \frac{2}{7}u^{7/2} + \frac{4}{5}u^{5/2} + \frac{2}{3}u^{3/2}$$
3. Se resuelve la integral.
$$\int x^2 \sqrt{x - 1} \, dx = \frac{2}{7}(x - 1)^{7/2} + \frac{4}{5}(x - 1)^{5/2} + \frac{2}{3}(x - 1)^{3/2} + C$$
El resultado de la integral indefinida es
$$\frac{2}{7}(x - 1)^{7/2} + \frac{4}{5}(x - 1)^{5/2} + \frac{2}{3}(x - 1)^{3/2} + C.$$

b.
$$\int \frac{5x \, dx}{x^2 + 4x + 20}$$

ш	Docarinaión	Operación
#	Descripción	Operación
1.	Se realiza una	$\int \frac{5x}{x} dx$
	completación de	$\int \frac{3x}{(x^2 + 4x + 4) + 20 - 4} dx$
	cuadrados en el	$\int 5x$
	denominador.	$\int \frac{5x}{(x+2)^2 + 16} dx$
2.	Se define la variable a	u = x + 2
	reemplazar y se deriva.	du = dx
		x = u - 2
3.	Se realiza la sustitución.	$\int \frac{5(u-2)}{u^2+16} du$
		J u + 10
		$\int \frac{5u}{u^2 + 16} du - 10 \int \frac{1}{u^2 + 16} du$
4.	Se define otra variable	. 2 . 10
	para reemplazar y se	$z = u^2 + 16$
	deriva.	$dz = 2u \ du$
5.	Se realiza la sustitución y	$5 \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$
	se resuelve la integral.	$\frac{5}{2} \int \frac{1}{z} dz - 10 \left(\frac{1}{4} tan^{-1} \left(\frac{u}{4} \right) \right) =$
		$\frac{5}{2}ln (x+2)^2+16 -\frac{5}{2}tan^{-1}(\frac{x+2}{4})+C$
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
		to do do la fecto quel fo do Certido o a

El resultado de la integral indefinida es

$$\frac{5}{2}\ln|(x+2)^2+16|-\frac{5}{2}\tan^{-1}\left(\frac{x+2}{4}\right)+C.$$

c. Hallar
$$\frac{dy}{dx}$$
 $si: y = \int_{1/x}^{x^3} \theta sen\theta \ d\theta$

#	Descripción	Operación	
1.	Se cambian los límites de integración para obtener dos integrales separadas.	$\frac{dy}{dx} \int_{\frac{1}{x}}^{x^{3}} (\theta sen\theta) d\theta =$ $\frac{dy}{dx} \left[\int_{1/x}^{0} (\theta sen\theta) d\theta + \int_{0}^{x^{3}} (\theta sen\theta) d\theta \right]$	
2.	Se resuelven las integrales.	$-\frac{1}{x}sen(\frac{1}{x})*(-\frac{1}{x^2}) + x^3sen(x^3)*(3x^2) = \frac{sen(1/x)}{x^3} + 3x^5sen(x^3)$	
	El resultado de la integral indefinida es $\frac{sen(1/x)}{x^3} + 3x^5 sen(x^3).$		

TEMA 4

Sea R la región limitada por las gráficas de:

$$y = \sqrt{x+5}$$
 $y = \sqrt{5-x}$ $y = 1 - \frac{x^2}{25}$

Plantee una integral y resuélvala para calcular el volumen del sólido obtenido al rotar R alrededor de la recta x=5.

#	Descripción	Operación
1.	Se grafica la región limitada por las curvas descritas.	$X=5$ 3.0 2.5 $3.0=\sqrt{5}$
		$y = \sqrt{x+5}$ 1.5 $y = \sqrt{5} - x$
2.	Se plantea el volumen del sólido de revolución.	$V = 2\pi \left[\int_0^5 (5-x) \left[\sqrt{5-x} - \left(1 - \frac{x^2}{25}\right) \right] dx \right] + \int_{-5}^0 (5-x) \left[\sqrt{x+5} - \left(1 - \frac{x^2}{25}\right) \right] dx$

3.	Se simplifican las integrales.	$V = 2\pi \int_0^5 \left(5\sqrt{5 - x} - 5 + \frac{5x^2}{25} - x\sqrt{5 - x} + x - \frac{x^3}{25} \right) dx$	
		$+2\pi \int_{-5}^{0} \left(5\sqrt{5+x} - 5 + \frac{5x^{2}}{25} - x\sqrt{5+x} + x - \frac{x^{3}}{25}\right) dx$	
4.	Se evalúan y resuelven las integrales.	$V = 2\pi \left[-\frac{10}{3} (5-x)^{\frac{3}{2}} - 5x + \frac{x^3}{15} + \frac{10}{3} (5-x)^{\frac{3}{2}} \right]$	
		$-\frac{2}{5}(5-x)^{\frac{5}{2}} + \frac{x^2}{2} - \frac{x^4}{100} \bigg]_0^5 + 2\pi \bigg[\frac{10}{3}(5+x)^{\frac{3}{2}} - 5x + \frac{x^3}{15} \bigg]_0^5$	
		$+\frac{10}{3}(5+x)^{\frac{3}{2}} - \frac{2}{5}(5+x)^{\frac{5}{2}} + \frac{x^2}{2}$	
		$-\frac{x^4}{100}\Big]_{-5}^0$	
5.	Se simplifica.	$V = 2\pi \left\{ \left[-25 + \frac{25}{3} + \frac{25}{2} - \frac{25}{4} \right] - \left[-22.36 \right] \right\}$	
		$+ [52.17] - \left[25 - \frac{25}{3} + \frac{25}{2} - \frac{25}{4}\right]$ $V = 2\pi(41.20) = 258.85u^{3}$	
	El volumen del sólido de revolución es $258.85u^3$.		