UNIVERSIDAD DE SAN CARLOS DE GUATEMALA

FACULTAD DE INGENIERÍA

DEPARTAMENTO DE MATEMÁTICA

CLAVE-103-3-V-1-00-2016

CURSO: Matemática Básica 2

SEMESTRE: Primero

CÓDIGO DEL CURSO: 103

TIPO DE EXAMEN: Tercer Examen Parcial

FECHA DE EXAMEN: Mayo de 2016

RESOLVIÓ EL EXAMEN: Luis Maldonado

REVISÓ EL EXAMEN: Ing. Eder Paz

COORDINADOR: Ing. José Alfredo González Díaz

TEMA 1(35 puntos)

- a) Demuestre que $\int_a^b x dx = \frac{b^2 a^2}{2}$ usando la definición de integral definida con $x_i^* = x_i$
- b) Evalúe la siguiente integral definida interpretándola en términos de áreas:

$$\int_{-4}^{4} (x - \sqrt{(16 - x^2)}) dx$$

c) Evalúe la siguiente integral definida usando el Teorema Fundamental del Cálculo, Parte 2:

$$\int_{-5}^{1} |x+2| dx$$

TEMA 2 (20 puntos).

- a) Obtenga $\int x^3 \sqrt{x^2 + 1} dx$ usando la regla de la sustitución.
- b) Si $f(x) = \int_0^x (1 t^2) e^{t^2} dt$ ¿sobre qué intervalos es creciente f?

TEMA 3(20 puntos).

Encuentre el área de la región acotada por la curva: x+y=0, y la curva $x=y^2+3y$

TEMA 4(25 puntos).

Calcular el volumen del sólido obtenido al girar la región acotada por las siguientes curvas.

$$y^2 = x, \qquad x = 2y$$

- a) Cuando la región gira alrededor de la recta x = 6, usando método de los cascarones cilíndricos.
- b) Cuando la región gira alrededor de la recta x = -2, usando método de la arandela.

Solución de examen

0.1. Tema 1(35 puntos)

a) Demuestre que $\int_a^b x dx = \frac{b^2 - a^2}{2}$ usando la definición de integral definida con $x_i^* = x_i$.

No.	Explicación	Operatoria
1	Esta integral se puede expresar como el límite de la suma de Riemann. Se divide el intevalo [a,b] en n subintervalos y se toman como puntos muestra los puntos extremos derechos $x_i^* = x_i$.	$\int_{a}^{b} x dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}) \Delta x$ $\Delta x = \frac{b-a}{2}$ $x_{i} = a + \frac{b-a}{n}i$ $f(x_{i}) = a + \frac{b-a}{n}i$
2	Se sustituye $f(x_i)$ y Δx en el límite.	$\int_{a}^{b} x dx = \lim_{n \to \infty} \sum_{i=1}^{n} \left(a + \frac{b-a}{n} i \right) \left(\frac{b-a}{n} \right)$
3	Desarrollando el limite anterior se obtiene.	$\lim_{n \to \infty} \sum_{i=1}^{n} \left(a \left(\frac{b-a}{n} \right) + \left(\frac{b-a}{n} \right)^{2} i \right)$
4	El primer término de la sumatoria es una constante y se sabe que $\sum_{i=1}^{n} c = nc$. El segundo término se obtiene de la fórmula para la suma de enteros positivos $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}.$	$\lim_{n \to \infty} \left(a \varkappa \left(\frac{b-a}{\varkappa} \right) + \left(\frac{b-a}{n} \right)^2 \sum_{i=1}^n i \right)$ $= a(b-a) + \lim_{n \to \infty} \left(\frac{b-a}{n} \right)^2 \left(n \left(\frac{n+1}{2} \right) \right)$ $= ab - a^2 + \lim_{n \to \infty} \frac{(b-a)^2}{2n} (n+1)$ $= ab - a^2 + \frac{(b-a)^2}{2} + \lim_{n \to \infty} \frac{(b-a)^2}{2n}$
5	Simplificando la expresión se obtiene el resultado indicado.	$\int_{a}^{b} x dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}) \Delta x$ $= ab - a^{2} + \frac{b^{2} - 2ab + a^{2}}{2}$ $= \frac{b^{2}}{2} + \frac{a^{2}}{2} - a^{2} + ab - \frac{2ab}{2}$ $= \frac{b^{2} - a^{2}}{2}$

b) Evalúe la siguiente integral definida interpretándola en términos de áreas:

$$\int_{-4}^{4} (x - \sqrt{16 - x^2}) dx$$

No.	Explicación	Operatoria
1	Al dibujar las funciones por separado en el mismo sistema coordenado se puede observar que esta formada por una recta y un semicirculo de radio igual a 4.	
2	Dado que f y g son continuas se puede aplicar la siguiente propiedad de las integrales: $\int_a^b [f(x) + g(x)] dx = \int_a^b f(x) dx + \int_a^b g(x) dx$. Se observa que el área bajo la curva $y = x$ en el intervalo $[-4,4]$ es una diferencia de areas cuyo resultado es igual a cero. Por otro lado, el área del semicirculo esta dada por $\frac{\pi r^2}{2}$.	$\int_{-4}^{4} [x - \sqrt{16 - x^2}] dx =$ $\int_{-4}^{4} x dx + \int_{-4}^{4} -\sqrt{16 - x^2} dx = \frac{-\pi(4)^2}{2}$
3	Por lo tanto el resultado de la integral definida interpretándola en términos de areas es:	$\int_{-4}^{4} [x - \sqrt{16 - x^2}] dx = -8\pi$

c) Evalúe la siguiente integral definida usando el Teorema Fundamental del Cálculo, parte 2:

$$\int_{-5}^{1} |x + 2| dx$$

Debido a que $f(x) = x+2 $ es una función por partes la integral se divide en dos. En la gáfica se puede observar el área bajo la curva que se desea encontrar. $f(x) = \begin{cases} -x-2 & \text{si } x \leq -2 \\ x+2 & \text{si } x > -2 \end{cases}$ $= \left[-\frac{x^2}{2} - 2x \right]_{-5}^{-2} + \left[\frac{x^2}{2} + 2x \right]_{-2}^{1}$ $= \left[2 - \left(\frac{25}{2} + 10 \right) \right] + \frac{5}{2} - \left[2 - 4 \right]$ $= 2 + \frac{25}{2} - 10 + \frac{5}{2} + 2$ $= 9$	Explicación	Operatoria
	Debido a que $f(x) = x + 2 $ es una función por partes la integral se divide en dos. En la gáfica se puede observar el área bajo la curva que se desea encontrar.	$\int_{-5}^{1} x+2 dx$ $= \int_{-5}^{-2} [-x-2] dx + \int_{-2}^{1} [x+2] dx$ $= \left[-\frac{x^2}{2} - 2x \right]_{-5}^{-2} + \left[\frac{x^2}{2} + 2x \right]_{-2}^{1}$ $= \left[2 - \left(\frac{25}{2} + 10 \right) \right] + \frac{5}{2} - \left[2 - 4 \right]$ $= 2 + \frac{25}{2} - 10 + \frac{5}{2} + 2$
		Debido a que $f(x) = x + 2 $ es una función por partes la integral se divide en dos. En la gáfica se puede observar el área bajo la curva que se desea encontrar.

0.2. Tema 2(20 puntos)

a) Obtenga $\int x^3 \sqrt{x^2+1} dx$ usando la regla de la sustitución.

No.	Explicación	Operatoria
1	Se realiza la sustitución $u = x^2 + 1$ y se separa un factor del término x^3 para poder utilizar la regla de la sustitución.	$\int x^3 \sqrt{x^2 + 1} dx \qquad u = x^2 + 1$ $= \int x^2 x \sqrt{x^2 + 1} dx du = 2x dx$
2	Sustituyendo la nueva variable y el diferencial en la integral se obtiene.	$x^{2} = u - 1$ $xdx = \frac{du}{2}$ $\int x^{2}x\sqrt{x^{2} + 1}dx = \int \frac{(u-1)\sqrt{u}}{2}du$ $= \int \frac{1}{2} \left(u^{3/2} - u^{1/2}\right)du$
3	Ahora se puede encontrar un antiderivada de la forma $\int u^n dx = \frac{u^{n+1}}{n+1} \text{ para } n \neq -1. \text{ Y por último se retorna a la variable x.}$	$\int \frac{1}{2} \left(u^{3/2} - u^{1/2} \right) du = \frac{1}{2} \left(\frac{2u^{5/2}}{5} - \frac{2u^{3/2}}{3} \right) + C$ $= \frac{u^{5/2}}{5} - \frac{u^{3/2}}{3} + C$ $= \frac{1}{5} (x^2 + 1)^{5/2} - \frac{1}{3} (x^2 + 1)^{3/2} + C$

b) Si $f(x) = \int_0^x (1-t^2)e^{t^2}dt$ ¿sobre qué intervalos es creciente f?

No.	Explicación	Operatoria
1	Aplicando el Teorema Fundamental del Cálculo, parte 1 se obtiene:	$f(x) = \int_0^x (1 - t^2)e^{t^2} dt$ $f'(x) = (1 - x^2)e^{x^2}$
3	Se determinan los puntos críticos resolviendo $f'(x) = 0$	$(1 - x^2)e^{x^2} = 0$ $1 - x^2 = 0$ $x = \pm 1$
4	Se evalúa $f'(x)$ en cada intervalo. $f(x)$ es creciente en los intervalos cuya pendiente es positiva, es decir, cuando $f'(x) > 0$.	$f'(-2) = -3e^{4}$ $f'(0) = 1$ $f'(2) = -3e^{4}$ $\frac{Intervalo \mid f'(x) \mid f}{(-\infty, -1) \mid - \mid decreciente}$ $(-1, 1) \mid + \mid creciente$ $(1, \infty) \mid - \mid decreciente$
5	Por lo tanto, $f(x)$ es creciente en el intervalo:	(-1,1)

0.3. Tema 3 (20 puntos)

Encuentre el área de la región acotada por la curva: x+y=0, y la curva $x=y^2+3y$.

No.	Explicación	Operatoria
1	Primero se determinan los puntos de intersección entre las funciones. Por facilidad se despeja x de la primera función y se iguala a la segunda.	$-y = y^{2} + 3y$ $y(y+4) = 0$ Puntos de intersección: $y_{1} = 0 y_{2} = -4$ $x_{1} = 0 x_{2} = 4$
2	Se muestra la gáfica de la región resultante. Para determinar el área se utilizan diferenciales de y .	2 2 1 1 2 3 4 z -2 -1 dy
3	El largo de cada diferencial es igual a la diferencia entre las curvas $x = -y$ y $x = y^2 + 3y$. Luego, el área de cada diferencial es igual a su largo l_i por el ancho Δy . Y sumando todos los diferenciales de área A_i conforme $\Delta y \to 0$ se determina el área total entre las curvas en el intervalo $-4 \le y \le 0$.	$A_i = l_i * \Delta y$ $A_i = [-y - (y^2 + 3y)] \Delta y$ $A = \lim_{n \to \infty} \sum_{i=1}^n A_i$ $A = \int_{-4}^0 [-y - (y^2 + 3y)] dy$
4	Resolviendo la integral se obtiene:	$A = \int_{-4}^{0} [-y^2 - 4y] dy$ $A = \left[\frac{-y^3}{3} - 2y^2 \right]_{-4}^{0}$ $A = -\left[\frac{64}{3} - 32 \right]$ $A = \frac{32}{3} u^2$

0.4. Tema 4 (25 puntos)

Calcular el volumen del sólido obtenido al girar la región acotada por las siguientes curvas.

$$y^2 = x, x = 2y$$

a) Cuando la región gira alrededor de la recta x=6, usando método de los cascarones cilíndricos.

No.	Explicación	Operatoria
	-	$y^{2} = 2y$ $y(y-2) = 0$ Puntos de intersección: $y_{1} = 0 y_{2} = 2$ $x_{1} = 0 x_{2} = 4$
1	EL primer paso es encontrar los puntos de intersección entre las curvas. La región entre las curvas se muestra en la figura.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
2	Para determinar el volumen por el método de cascarones cilindricos se encuentra el radio de revolución y la altura de los diferenciales. Recordar que los diferenciales son paralelos al eje de rotación.	$r_i = 6 - x_i$ $h_i = \sqrt{x_i} - x_i/2$ $V = \int_0^4 2\pi (6 - x)(\sqrt{x} - x/2) dx$
3	Resolviendo la integral se obtiene:	$V = 2\pi \int_0^4 \left[6x^{1/2} + 3x - x^{3/2} + \frac{x^2}{2} \right] dx$ $V = 2\pi \left[4x^{3/2} - \frac{3x^2}{2} - \frac{2x^{5/2}}{5} + \frac{x^3}{6} \right]_0^4$ $V = 2\pi \left(32 - 24 - \frac{64}{5} + \frac{64}{6} \right)$ $V = \frac{176\pi}{15} u^3$

b) Cuando la región gira alrededor de la recta x=-2, usando el método de la arandela.

No.	Explicación	Operatoria
1	Por el método de la arándela los diferenciales son perpendiculares al eje de rotación $(x=-2)$. El radio exterior es igual a la distancia de la curva $y=\frac{x}{2}$ al eje de rotación y el radio interior es igual a la distancia de la curva $y=\sqrt{x}$ al eje de rotación.	$r_{e} = 2 + 2y_{i}$ $r_{i} = 2 + y_{i}^{2}$ $r_{i} = 2 + y_{i}^{2}$ $V = \int_{0}^{2} \pi[(2 + 2y_{i})^{2} - (2 + y_{i}^{2})^{2}]dy$
3	Resolviendo la integral se obtiene:	$V = \pi \int_0^2 4 + 8y + 4y^2 - 4 - 4y^2 - y^4 dy$ $V = \pi \int_0^2 (-y^4 + 8y) dy$ $V = \pi \left[\frac{-y^5}{5} + 4y^2 \right]_0^2$ $V = \frac{48\pi}{5} u^3$