Ejercicios sobre área entre curvas

1. Por medio de integración, encuentre el área de la región limitada por las curvas

$$x + y^2 = 3$$
 $y 4x + y^2 = 0$

- **2.** Calcule el área de la región limitada por la curva $y = e^x$ y la recta que pasa por los puntos (0,1) y (1,e).
- 3. Cierta región del plano está acotada por la recta y = x y por la curva $y^2 = 6 x$. Encuentre el área de la región.
- **4.** Dibuje la región del plano limitada por las gráficas de las ecuaciones dadas y encuentre el área de la región limitada por las curvas.

$$x = 2y^2$$
 & $x = 4 + y^2$

- **5.** Dadas las ecuaciones $y = x^2 + 2$ & y = x + 4. Encuentre el área de la región limitada por ambas curvas.
- 6. Calcule el área limitada por las funciones $f(x) = 2\cos x$ y $g(x) = 2 2\cos x$ en el intervalo de 0 a 2π
- 7. Dibuje el área de la región en el primer cuadrante, limitada por las curvas $y = x^2$, $y = \frac{2}{1+x^2}$ y el eje y. Calcule el área de la región.
- 8. Encuentre el área de la región acotada por las gráficas de las ecuaciones

$$y = x^3 - 6x^2 + 8x$$
 & $y = -x^2 + 2x$

- 9. Calcule el área entre las curvas $y = 4(x-2)^2$ y $y = x^2 4x + 7$
 - **a.** Dibuje el área a encontrar e identifique el i-ésimo elemento de área.
 - b. Plantee la integral y calcule el área.
- 10. Encuentre el área de la región encerrada por las tres curvas cuyas ecuaciones son

$$y = x^2$$
, $y = 8 - x^2$ y $4x + y - 12 = 0$

Haga un dibujo del área a calcular, mostrando claramente los puntos de intersección de las curvas.

11. Encuentre el área de la región limitada por las gráficas

$$y = x^2, \qquad y = 4x - x^2$$

12. Determinar el área de la región limitada por las gráficas de:

$$x + y = 0 , \qquad y = x^2 + 3x$$

- 13. Encuentre el área de la región acotada por el eje y, la recta y=x y la recta $y=1-\left(\frac{2}{\pi}\right)x$
 - a. Dibuje el elemento de área.
 - **b.** Calcule la integral.

14. Determinar el área de la región limitada por las gráficas de

$$y = |x - 4| \qquad y \qquad y = \sqrt{x - 2}$$

Haga un dibujo de la región y muestre los elementos diferenciales de área utilizados.

- **15.** Una región del plano está limitada por la curva $y^2 = (x-2)$ y la recta x + y 4 = 0
 - **a.** Encuentre el área de la región utilizando diferenciales de área perpendiculares al eje *y*.
 - **b.** Plantee una integral para calcular el área con diferenciales de área perpendiculares al eje x.
- **16.** Para las siguientes curvas $f(x) = x^3 x^2 4x + 4$, $g(x) = 4 x^2$
 - a. Dibuje las gráficas y los puntos de intercepción de las mismas
 - b. Dibuje el rectángulo representativo, indicando sus características, altura y ancho
 - c. Plantee las integrales definidas que representan el área de la región encerrada por las curvas
 - d. Calcule las integrales.
- 17. Determine el número b tal que la recta y = b divida a la región delimitada por las curvas $y = x^2$ y y = 4 en dos regiones de áreas iguales.
- 18. Determine el valor de b, tal que la recta y = b divida en dos regiones de igual área a la región limitada por $y = x^2 + 4$ y el eje x.
- **19.** Encuentre el área de la región definida por la parábola $y = x^2$, la tangente a esta parábola en el punto (1,1) y el eje x.
- **20.** Encuentre el área de la región limitada por la parábola $2y = x^2$, la recta tangente a ésta parábola en el punto (2,2) y por el eje x.
- **21.** Encuentre el valor de la constante k > 0 tal que la región limitada por el eje x, las rectas x = k, x = -k y la curva $y = x^{1/3}$, tenga valor de 12 centímetros cuadrados.
- **22.** Sea *R* la región limitada por la parábola $y = x x^2$ y el eje *x*.
 - **a.** Encuentre el área de la región R.
 - **b.** Encuentre la ecuación de la recta y = mx que divide la región R en dos regiones de áreas iguales.
- 23. Calcular el área de la región limitada por las gráficas de

$$y = 2e^x - 1,$$
 $y = e^x$ & $y = 2.$

24. Determine el valor de c, c > 0; de tal manera que el área acotada por las curvas

$$y = c(x-2)^2$$
 & $y = c(x+4)$

tenga un valor de 125 unidades cuadradas.

25. Calcular el área de la región limitada por las gráficas de

$$x = y^2 - 4y$$
 & $x = 2y - y^2$

26. Identificando los siguiente elementos, gráfica de la región, rectángulo representativo y puntos de intercepción, Encuentre el área de la región delimitada por las siguientes curvas:

$$f(x) = x^3 - 2x^2$$
 y $g(x) = x - 2$

- **27.** Determine el número b tal que la recta y = b divida a la región delimitada por las curvas $y = x^2$ y y = 4 en dos regiones de áreas iguales.
- **28.** Sea R_1 la región limitada por $y=x^2$, y=0, x=b, donde b>0. Sea R_2 la región limitada por $y=x^2$, x=0, $y=b^2$.

Determinar los valores de b tal que las dos regiones descritas tengan la misma área.

- **29.** Calcule el área entre las curvas $y = 4(x-2)^2$ y $y = x^2 4x + 7$
 - a. Dibuje el área a encontrar e identifique el *i*-esimo elemento de área.
 - b. Plantee la integral y calcule el área.