Departamento de Matemática Matemática Básica 1 CLAVE-101-3-M-2-00-2016_s_09

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA

FACULTAD DE INGENIERÍA

DEPARTAMENTO DE MATEMÁTICA

CLAVE-101-3-M-2-00-2016_s_09

CURSO: Matemática Básica 1

SEMESTRE: Segundo

TIPO DE EXAMEN: Primer Examen Parcial

HORARIO DE EXAMEN: 9:00-11:00

FECHA DE EXAMEN: 12 de agosto de 2015

Ing. Miguel Ángel Castillo

REVISO EL EXAMEN: Carias

DIGITALIZÓ EL EXAMEN: José Miguel Castillo Vivar

Primer Examen Parcial

Tema 1: (40 puntos)

a) y b) resuelva las ecuaciones, c) resuelva la desigualdad y en d) Escriba la expresión de la forma a+bi

a)
$$2(x+1)^{-\frac{1}{3}} + 4(x+1)^{-\frac{2}{3}} = 6$$

b)
$$\sqrt{x-4} + \sqrt{x+4} = 2\sqrt{x-1}$$

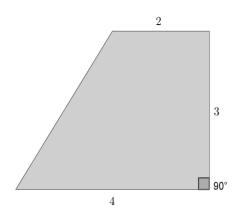
c)
$$\frac{x^2 - 2x + 3}{x + 1} \le 1$$

d)
$$(1+i)\left(\frac{2i}{1-5i}\right)$$

Tema 2 (20 puntos)

Se inscribe un cuadrado dentro de un triángulo equilátero de 8 centímetros de lado. Calcule el área sombreada

Tema 3 (20 puntos)



Un tanque tiene la forma de un prisma de 5 metros de largo, cuya sección transversal es un trapecio recto con base mayor de 4 metros, base menor de 2 metros y 3 metros de altura.

Encuentre:

- a) La capacidad del tanque
- b) Calcule la altura del agua, si el tanque está a 2/3 de su capacidad total.
- c) ¿Cuál es el área del espejo de agua dentro del tanque si el nivel del agua está a 2 pies del fondo?

Tema 4 (20 puntos) María tiene una hoja de cartulina con el largo igual al doble de su ancho. Si recorta un cuadrado de 2 pulgadas cuadradas de cada esquina y dobla los lados hacia arriba para

Departamento de Matemática Matemática Básica 1 CLAVE-101-3-M-2-00-2016_s_09

formar una caja sin tapa, tendrá una caja con un volumen de 140 pulgadas cúbicas. Encuentre las dimensiones de la hoja de cartulina original

SOLUCIÓN DEL EXAMEN

Tema 1: 40 puntos

a)
$$2(x+1)^{-1/3} + 4(x+1)^{-2/3} = 6$$

No.	Explicación	Operatoria
1.	Primero se usa una sustitución	$u = (x+1)^{-1/3}$
2.	Se reescribe la ecuación para que nos dé una expresión más sencilla	$2u + 4u^2 = 6$ $4u^2 + 2u - 6 = 0$
3.	Se procede a factorizar	(u-1)(4u+6) = 0
4.	Se despeja u	$u_1 = 1$ $u_2 = -\frac{6}{4} = -\frac{3}{2}$
5.	Se sustituye u_1 y se despeja x_1	$(x_1 + 1)^{-\frac{1}{3}} = 1$ $\frac{1}{(x_1 + 1)^{\frac{1}{3}}} = 1$ $(x_1 + 1)^{\frac{1}{3}} = 1$ $x_1 = 1^3 - 1$ $x_1 = 0$
6.	Después se sustituye u_2 y se despeja x_2	$(x_2 + 1)^{-\frac{1}{3}} = -\frac{3}{2}$ $\frac{1}{(x_2 + 1)^{\frac{1}{3}}} = -\frac{3}{2}$

Departamento de Matemática Matemática Básica 1 CLAVE-101-3-M-2-00-2016_s_09

		$(x_2 + 1)^{\frac{1}{3}} = -\frac{2}{3}$ $x_2 = \left(-\frac{2}{3}\right)^3 - 1$ $x_2 = -\frac{35}{27}$
7.	Después de obtener los valores de x se procede a valuar cada uno de estos para ver si cumplen con la ecuación	Para $x_1 = 0$ $2(0+1)^{-\frac{1}{3}} + 4(0+1)^{-\frac{2}{3}} = 6$ $6 = 6$ Para $x_2 = -\frac{35}{27}$ $2\left(\left(-\frac{35}{27}\right) + 1\right)^{-\frac{1}{3}} + 4\left(\left(-\frac{35}{27}\right) + 1\right)^{-\frac{2}{3}} = 6$ $15/2 \neq 6$

R./
$$x = 0$$

b)
$$\sqrt{x-4} + \sqrt{x+4} = 2\sqrt{x-1}$$

No.	Explicación	Operatoria
1.	En este problema lo primero es elevar al cuadrado ambos lados de la ecuación y desarrollar sus productos.	$((x-4)^{1/2} + (x+4)^{1/2})^2$ $= (2(x-1)^{1/2})^2$ $x-4+2((x-4)(x+4))^{\frac{1}{2}} + x$ $+4=4(x-1)$

2.	Se simplifica la expresión y eleva al cuadrado ambos lados de la expresión	$\left(2(x^2 - 16)^{\frac{1}{2}}\right)^2 = (2x - 4)^2$ $4x^2 - 64 = 4x^2 - 16x + 16$
3.	Se simplifica la expresión y se despeja x	$16x = 80$ $x = \frac{80}{16}$ $x = 5$

R./
$$x = 5$$

c)
$$\frac{x^2 - 2x + 3}{x + 1} \le 1$$

No.	Explicación	Operatoria
1.	Primero se procede a simplificar la desigualdad	$\frac{x^2 - 2x + 3}{x + 1} - 1 \le 0$
2.	Se simplifica algebraicamente y se factoriza para encontrar los puntos críticos y así determinar el intervalo en que cumple la desigualdad	$\frac{x^2 - 2x + 3 - x - 1}{x + 1} \le 0$ $\frac{x^2 - 3x + 2}{x + 1} \le 0$ $\frac{(x - 2)(x - 1)}{x + 1} \le 0$
3.	Con los valores criticos de x se procede a valuar para obtener el intervalo donde se cumple la desigualdad ≤ 0	$\frac{(x-2)(x-1)}{x+1} \le 0$ $\frac{(-\infty,-1) (-1,1] [1,2] [2,\infty]}{- + - +}$

Departamento de Matemática Matemática Básica 1 CLAVE-101-3-M-2-00-2016_s_09

4.	Con los valores de la tabla se concluye que el intervalo donde se cumple la desigualdad ≤ 0 es el	Intervalo (-∞,-1) y [1,2]
	siguiente	

R./

El intervalo de la desigualdad es $(-\infty,-1)$ y [1,2]

d)
$$(1+i)\left(\frac{2i}{1-5i}\right)$$

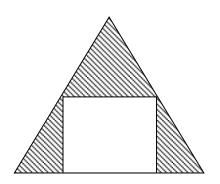
No.	Explicación	Operatoria
1.	Se desarrollan los productos y se sustituye i ² = -1	$\frac{2i + 2i^2}{1 - 5i}$
2.	Se multiplican por el conjugado del denominador	$\frac{(2i-2)}{(1-5i)} * \frac{(1+5i)}{(1+5i)}$
3.	Se desarrollan los productos y se simplifica la ecuación	$\frac{2i - 2 + 10i^2 - 10i}{(1 - 25i^2)}$ $\frac{-12 - 8i}{26}$
4.	Se reescribe de la forma a+b i	$-\frac{12}{26} - \frac{8}{26}i$ $-\frac{6}{13} - \frac{4}{13}i$

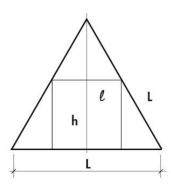
R./

$$-\frac{6}{13} - \frac{4}{13}i$$

Tema 2 (20 puntos)

Se inscribe un cuadrado dentro de un triángulo equilátero de 8 centímetros de lado. Calcule el área sombreada





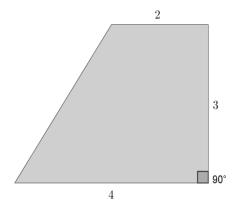
No	EXPLICACION	OPERATORIA
1	Se determinan las variables, donde L = 8 centímetros	$l = lado del cuadrado \ L = lado del triangulo \ h = altura del triangulo$
2	Escribir las ecuaciones que cumplan con las condiciones dadas ya sabiendo que la altura de un triángulo equilátero es $h_T=rac{\sqrt{3}}{2}L$ usamos triángulos semejantes para encontrar l	$\frac{l}{8} = \frac{4\sqrt{3} - l}{4\sqrt{3}}$

3	Se procede a despejar l	$(4\sqrt{3})l = 8(4\sqrt{3} - l)$ $(4\sqrt{3})l + 8l = 32\sqrt{3}$ $(8 + 4\sqrt{3})l = 32\sqrt{3}$ $l = \frac{32\sqrt{3}}{(8 + 4\sqrt{3})} = 3.71 \text{ cm}$
4	Despues de encontrar l se procede a encontrar el área que se nos solicita que será el triangualo equilátero – el cuadrado de lado l	$A_{sombreada} = A_{triangulo} - A_{cuadradro}$ $A_{s} = \frac{\sqrt{3}}{4}(8^{2}) - (3.71^{2})$ $A_{s} = 13.95 \ cm^{2}$

R./

$$A_s = 13.92 \ cm^2$$

Tema 3 (20 puntos)



a) La capacidad del tanque

Un tanque tiene la forma de un prisma de 5 metros de largo, cuya sección transversal es un trapecio recto con base mayor de 4 metros, base menor de 2 metros y 3 metros de altura.

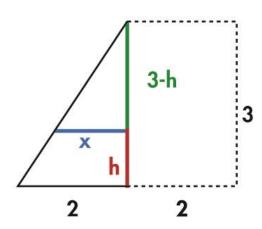
Encuentre:

- a) La capacidad del tanque
- b) Calcule la altura del agua, si el tanque está a 2/3 de su capacidad total.
- c) ¿Cuál es el área del espejo de agua dentro del tanque si el nivel del agua está a 2 pies del fondo?

No.	Explicación	Operación
1	Identificación de variables	Fondo = 5 metros Altura = 3 metros Base mayor = 4 metros Base menor = 2 metros
2	Calculamos la capacidad del tanque	$Vol_{Tanque} = \left(\frac{B_{mayor} + B_{menor}}{2}\right)(h)(F)$
3	Procedemos a sustituir las variables	$Vol_{Tanque} = \left(\frac{4+2}{2}\right)(3)(5)$
4	Capacidad del tanque	$Vol_{Tanque} = 45$

R./
Capacidad del tanque de 45 m³

b). Calcule la altura del agua, si el tanque está a 2/3 de su capacidad total.



No.	Explicación	Operación
1	Identificación de variables según nuestro bosquejo	$h=$ altura del trapecio $b_1=4 ext{ metros} \ b_2=2+x$
2	Para poner x en términos de h se utilizaran triángulos semejantes	$\frac{3}{3-h} = \frac{2}{x}$ $3x = 2 * (3 - h)$ $x = 2 - \frac{2h}{3}$
3	Después de poner todo en términos de h procedemos a crear nuestra función de volumen a 2/3 de su capacidad	$\left(\frac{2}{3}\right)(45) = h * \left(\frac{4+2+(2-\frac{2h}{3})}{2}\right) * 5$
4	Simplificamos la ecuación	$30 = h * \left(\frac{24 - 2h}{6}\right) * 5$ $\frac{30 * 6}{5} = 24h - 2h^{2}$ $2h^{2} - 24h + 36 = 0$
5	La ecuación a resolver es cuadrática con lo cual usaremos $x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$ para encontrar los valores de h que	a = 2 $b = -24$ $c = 36$

	cumplan la función	
6	Habiendo identificado a, b y c valuamos en la función y nos da los valores de h	$h_1 = 1.76 m$ $h_2 = 10.24 m$
7	Se seleccionara h ₁ ya que es la que cumple con nuestra función, dado que h ₂ sobrepasa la altura de nuestro trapecio	$h_1 = 1.76 m$

R./

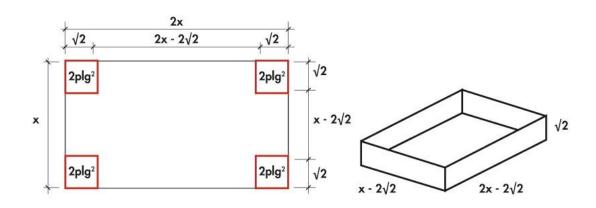
La altura a cuando el tanque está a 2/3 de su capacidad es 1.76m

c) ¿Cuál es el área del espejo de agua dentro del tanque si el nivel del agua está a 2 pies del fondo?

No.	Explicación	Operación
1	Se procede a pasar los 2 pies a metros para trabajar con una sola unidad de medida	$2 pies * \frac{0.305 \text{ metros}}{1 \text{ pie}} = 0.61 metros$
2	Como siguiente paso se procede a ingresar esa altura en nuestra función de h encontrada en el inciso anterior, y con esto encontramos b ₂	$x = 2 - \frac{2(.61)}{3} = 1.59 \text{ metros}$ $b_2 = 2 + 1.59$ $b_2 = 3.59 \text{ metros}$
3	Para calcular el área de espejo del agua solo se multiplica b₂ por su fondo que es de 5 metros	A = 3.59 * 5 A = 17.95

Tema 4 (20 puntos)

María tiene una hoja de cartulina con el largo igual al doble de su ancho. Si recorta un cuadrado de 2 pulgadas cuadradas de cada esquina y dobla los lados hacia arriba para formar una caja sin tapa, tendrá una caja con un volumen de 140 pulgadas cúbicas. Encuentre las dimensiones de la hoja de cartulina original.



No.	Explicación	Operatoria
1	Procedemos a identificar las variables de la cartulina basados en nuestro bosquejo	$\begin{array}{l} L_{cartulina} = \ 2x \\ A_{cartulina} = \ x \end{array}$
2	Lo siguiente es sabiendo que nuestra caja tendrá un volumen de 140 pulgadas cubicas y su volumen es V=H*L*A	$H_{caja} = \sqrt{2}$ $L_{caja} = 2x - 2\sqrt{2}$ $A_{caja} = x - 2\sqrt{2}$ $V_{caja} = 140$
3	Se procede a simplificar la función para poder encontrar una forma de resolverla	$140 = (\sqrt{2})(2x - 2\sqrt{2})(x - 2\sqrt{2})$ $140 = (\sqrt{2})(2x^2 - 6\sqrt{2}x + 4 * 2)$ $140 = 2\sqrt{2}x^2 - (6 * 2)x + 8\sqrt{2}$ $0 = \sqrt{8}x^2 - 12x + 8\sqrt{2} - 140$ $0 = \sqrt{8}x^2 - 12x - 128.686$

Departamento de Matemática Matemática Básica 1 CLAVE-101-3-M-2-00-2016_s_09

4	La ecuación a resolver es una cuadrática para lo cual usaremos $x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$ y sustituiremos los valores para que nos de la solución que cumpla	$a = \sqrt{8}$ $b = -12$ $c = -128.686$
5	Después de sustituir los valores de a, b y c en la ecuación cuadrática seleccionamos el valor que cumple con nuestra función de volumen	$x_1 = 9.19 \ pulg.$ $x_2 = -4.95 \ pulg.$
6	Se selecciona x ₁ ya que no pueden haber longitudes negativas y se procede a encontrar las dimensiones de la cartulina	$x_1 = 9.19 \ pulg$ $A = 9.19 \ pulg$ $L = 18.38 \ pulg$

R./	
	$A = 9.19 \ pulg$
	$L = 18.38 \ pulg$