UNIVERSIDAD DE SAN CARLOS DE GUATEMALA

FACULTAD DE INGENIERÍA

DEPARTAMENTO DE MATEMÁTICA

CLAVE-101-1-M-1-06-2016_07

CURSO: Matemática Básica 1

SEMESTRE: Primero, curso de vacaciones

CÓDIGO DEL CURSO: 101

TIPO DE EXAMEN: Primer Examen Parcial

FECHA DE EXAMEN: 08 de Junio de 2016

RESOLVIO Y DIGITALIZO EL

EXAMEN:

KEVIN JAVIER CHIN ORTIZ

REVISO EL EXAMEN: Ing. Alejandro Estrada

COORDINADOR: Ing. José Alfredo González Díaz

PRIMER EXAMEN PARCIAL **TEMARIO A1**

Tema 1 (30 puntos)

Resuelva como corresponda en cada caso:

a)
$$3\sqrt{x} + \sqrt[3]{x} = 12x^{1/6} + 4$$

b)
$$\frac{7}{3x+15} - 1 \le \frac{4}{3x-12}$$

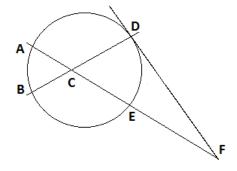
Tema 2 (15 puntos)

Un farmacéutico debe elaborar 30 mililitros de gotas especiales para los ojos para un paciente con glaucoma. La solución de gotas para los ojos debe tener un ingrediente activo al 4%, pero el farmacéutico sólo tiene al 10% y solución al 1% en existencia. ¿Cuánto de cada tipo de solución debe usarse para surtir la receta?

Tema 3 (20 puntos)

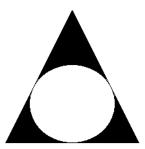
En la figura adjunta, la recta \overrightarrow{DF} es tangente al círculo. Si se sabe que: $\widehat{DE} = 70^\circ$; $\angle DCE = 60^\circ$ y $\widehat{BE} = 120^\circ$, calcule:

- a) El valor del arco \widehat{AB} .
- b) El valor del ángulo *∢CDF*.
- c) El valor de ángulo *∢DFE*.



Tema 4 (20 puntos)

Una esfera se inscribe en un cono recto circular cuyo diámetro mide 48 centímetros y su altura 32 centímetros (la figura adjunta muestra una sección transversal). Determine el valor del volumen del sólido que queda dentro del cono pero fuera de la esfera.



Tema 5 (20 puntos)

Un depósito de 8 pies de longitud, tiene una sección trasversal con la forma de trapecio recto invertido, en el fondo del depósito la base mide 3 pies, en la parte superior mide 6 pies, si la altura es de 4 pies, determine:

- a) La capacidad del depósito.
- b) La altura del nivel de agua cuando el volumen es de 99 pies cúbicos.
- c) La altura del nivel de agua cuando el área de espejo de agua es de 30 pies cúbicos.

SOLUCIÓN DEL EXAMEN

Tema 1: 30 puntos

a)
$$3\sqrt{x} + \sqrt[3]{x} = 12x^{1/6} + 4$$

No.	Explicación	Operatoria
1.	Para una mejor visualización quitaremos los radicales y trabajaremos con exponentes fraccionarios.	$3x^{1/2} + x^{1/3} - 12x^{1/6} - 4 = 0$
2.	Trabajaremos con el mismo exponente, en este caso el de menor valor.	$3(x^{1/6})^3 + (x^{1/6})^2 - 12x^{1/6} - 4 = 0$
3.	Hacemos la siguiente sustitución en nuestra ecuación: $ {\rm Si} \qquad w = x^{1/6} $	$3(w)^3 + (w)^2 - 12w - 4 = 0$
4.	Aplicamos un caso de factorización, agrupación de términos y simplificamos.	$(3w^{3} + w^{2}) + (-12w - 4) = 0$ $w^{2}(3w + 1) - 4(3w + 1) = 0$ $(3w + 1)(w^{2} - 4) = 0$ $(3w + 1)(w - 2)(w + 2) = 0$ $w_{1} = -1/3$ $w_{2} = 2$ $w_{2} = -2$
5.	Para hallar las posibles soluciones a nuestra ecuación de origen, regresamos los valores de "w" a términos de "x" con la sustitución hecha en el paso 3.	Para W_1 : $x^{1/6} = -1/3$ $x_1 = (-1/3)^6 = \frac{1}{729}$ Para W_2 : $x^{1/6} = 2$ $x_2 = x = (2)^6 = 64$ Para W_3 : $x^{1/6} = -2$ $x_3 = x = (-2)^6 = 64$
6.		Para x_1 :

Departamento de Matemática Matemática Básica 1

		()
Comprobamos las posibles soluciones en la	a	
ecuación de origen.		
_		Para x

$$3\left(\frac{1}{729}\right)^{\frac{1}{2}} + \left(\frac{1}{729}\right)^{\frac{1}{3}} - 12\left(\frac{1}{729}\right)^{\frac{1}{6}} - 4 = -\frac{70}{9}$$
"No Cumple"

Para
$$x_2$$
 y x_3 :
 $3(64)^{\frac{1}{2}} + (64)^{\frac{1}{3}} - 12(64)^{\frac{1}{6}} - 4 = 0$
"Si cumple"

$$R. x = 64$$

b)
$$\frac{7}{3x+15} - 1 \le \frac{4}{3x-12}$$

No.	Explicación	Operatoria
1.	Colocaremos todas las expresiones de un solo lado de la igualdad, factorizando los denominadores.	$\frac{7}{3(x+5)} - \frac{1}{1} - \frac{4}{3(x-4)} \le 0$
2.	Sacando el M.C.M procedemos a realizar la operación entre fracciones y simplificar hasta encontrar los valores críticos.	$\frac{7(x-4) - 3(x+5)(x-4) - 4(x+5)}{3(x+5)(x-4)} \le 0$ $\frac{7x - 28 - 3(x^2 + x - 20) - 4x - 20}{3(x+5)(x-4)} \le 0$ $\frac{3x - 48 - 3x^2 - 3x + 60}{3(x+5)(x-4)} \le 0$ $\frac{12 - 3x^2}{3(x+5)(x-4)} \le 0$ $\frac{\cancel{3}(4-x^2)}{\cancel{3}(x+5)(x-4)} \le 0$
3.	Factorizamos el numerador con una diferencia de cuadrados y así encontraremos los factores de la desigualdad y por lo tanto los puntos críticos.	$\frac{(2-x)(2+x)}{(x+5)(x-4)} \le 0$ Valores críticos: $x = -5, x = -2, x = 2, x = 4$

Departamento de Matemática Matemática Básica 1

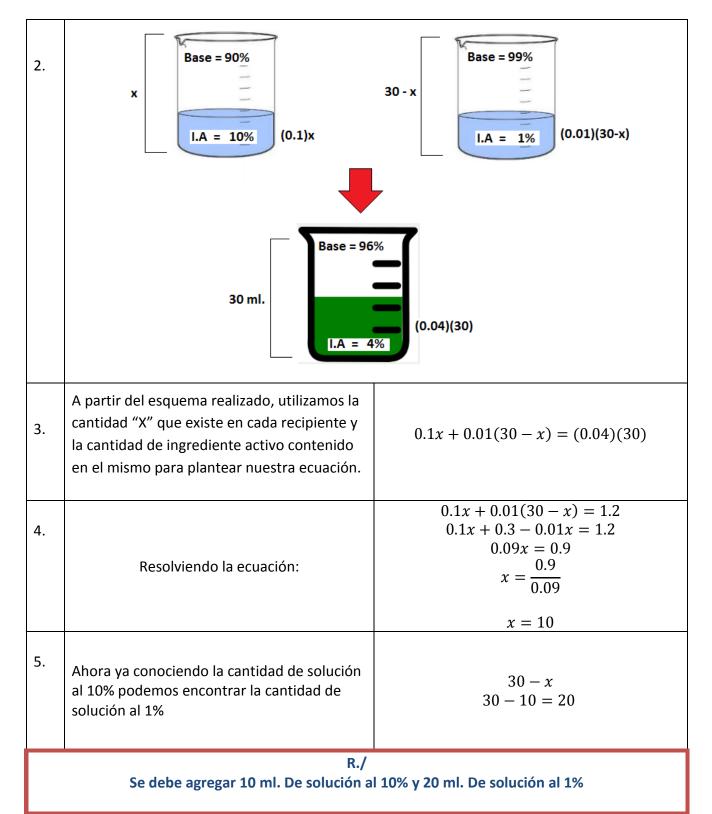
4.							
	Conociendo ya los valores críticos, podemos	Intervalo	$(-\infty, -5)$	(-5, -2)	(-2,2)	(2,4)	(4,∞)
	armar nuestros intervalos y con ello nuestra	Х	-6	-3	0	3	5
	tabla de signos resultantes.	(2-x)	+	+	+	-	-
		(2 + x)	-	-	+	+	+
		(x + 5)	_	+	+	+	+
		(x-4)	_	-	-	-	+
		Signo	-	+	-	+	-
5.	Teniendo en cuenta que es se trata de una desigualdad menor o igual que, utilizamos los intervalos con signo negativo y verificamos si serán con intervalo abierto o cerrado.	(–	-∞, –5)	<i>U</i> [−2,	2] <i>U</i>	(4,∞)	

R./
$$X \in \ (-\infty, -5) \ U \ [-2, 2] \ U \ (4, \infty)$$

Tema 2: 15 puntos

No.	Explicación	Operatoria
1.	Realizaremos un esquema para comprender mejor lo que sucede en el problema y así saber el porcentaje de cada tipo de solución que debe utilizarse.	I.A = Ingrediente Activo

Departamento de Matemática Matemática Básica 1



Tema 3: 15 puntos

a) El valor del arco \widehat{AB}

No.	Explicación	Operatoria
1.	Primero localizaremos en la figura los datos iniciales que nos da el problema.	A $ \begin{array}{c} $
		Sustituyendo valores conocidos:
2.	Aplicando el principio de ángulos internos, si sabemos que $\angle DCE = 60^{\circ}$, entonces:	$60 = \frac{1}{2}(\widehat{AB} + 70)$
	$\angle ACB = 60^{\circ}$, por lo tanto utilizamos la siguiente	Despejando \widehat{AB} :
	ecuación:	$\widehat{AB} + 70 = 120$
	$\theta = \frac{1}{2}(\widehat{AB} + \widehat{DE})$	$\widehat{AB} = 120 - 70$
	۷	$\widehat{AB} = 50^{\circ}$
b) El valor del ángulo <i>≮ CDF</i>	
3.	Sabiendo el valor de \widehat{BE} y de \widehat{DE} podemos utilizar la siguiente ecuación: $ \not < CDF = \frac{\widehat{BE} + \widehat{DE}}{2} $	$\angle CDF = \frac{\widehat{BE} + \widehat{DE}}{2}$ $\angle CDF = \frac{120 + 70}{2}$ $\angle CDF = 95^{\circ}$
C) El valor del ángulo <i>≮ DFE</i>	
4.	Sabiendo que la sumatoria de los ángulos de un triángulo es de 180° , notamos que se forma un	$\angle DFE = 180 - 95 - 60$

Departamento de Matemática Matemática Básica 1

triangulo entre DCF del cual conocemos dos ángulos
$$\angle CDF = 95^{\circ} \text{ y } \angle DCE = 60^{\circ}$$
 $\angle DFE = 25^{\circ}$ $\angle AB = 50^{\circ} \angle CDF = 95^{\circ} \angle DFE = 25^{\circ}$

Tema 4: 20 puntos.

No.	Explicación	Operación
1	Primero localizaremos en la gráfica los datos iniciales que nos da el problema	32 cm 32 - r 24cm 24cm
2	Para encontrar el volumen dentro del cono y fuera de la esfera utilizaremos la siguiente fórmula:	$V = V_{cono} - V_{esfera}$ $V = \frac{1}{3}\pi r^2 h - \frac{4}{3}\pi r^3$
3	Como se puede notar la única incógnita en la ecuación es el radio de la esfera, por lo tanto aplicaremos triángulos semejantes entre el triángulo rectángulo del cono y el triángulo rectángulo que se forma desde el centro de la esfera hasta el punto de tangencia con el cono	32 - r 24 r
4	Aplicando el teorema de triángulos semejantes y despejando el radio de la esfera:	$\frac{32-r}{r} = \frac{40}{24}$ $32-r = \frac{5}{3}r$ $r + \frac{5}{3} = 32$

Departamento de Matemática Matemática Básica 1

		$\frac{8}{3}r = 32$ $r = \frac{(32)(3)}{8} = 12 \text{ cm}$
5	Sustituyendo en la ecuación y hallando el volumen indicado:	$V = \frac{1}{3}\pi(24)^2(32) - \frac{4}{3}\pi(12)^3$ $V = 3840\pi = 12063.716 \text{ cm}^3$

R./ El volumen del sólido que queda dentro de cono y fuera de la esfera es de : $12063.716\ cm^3$

Tema 5: 20 puntos

No.	Explicación	Operación		
1	Para iniciar el problema haremos un esquema representando todos los valores iniciales e incógnitas	1.5 1.5 1.5 x 3 x 4		
a	Capacidad del depósito:			
2	Para determinar la capacidad del depósito utilizamos la siguiente ecuación de volumen:	$V = (\frac{b_1 + b_2}{2})(h)(longitud)$ $V = (\frac{3+6}{2})(4)(8)$ $V = 144 p^3$		
b	b) La altura del nivel de agua cuando el volumen es de 99 pies cúbicos:			
3	Para este inciso la altura del nivel de agua es variable, ya que según el tanque tanga un mayor o menor volumen la altura subirá o bajará.	$99 = (\frac{b_1 + b_2}{2})(h)(longitud)$		

4	Por lo tanto, nuestra incógnita en la ecuación será la base b_1 (base superior del trapecio), ya que no permanecerá constante, para ello analizamos el triángulo rectángulo que se forma en uno de los extremos del trapecio	1.5 x
5	Aplicando el teorema de triángulos semejantes:	$\frac{1.5}{x} = \frac{4}{h}$ $x = \frac{3}{8}h$
6	Reescribiendo el nuevo valor de b_1 en función de "h"	Si $b_1 = 3 + 2x$ $b_1 = 3 + 2(\frac{3}{8}h)$ $b_1 = 3 + \frac{3}{4}h$
7	Ahora sustituimos el nuevo valor de "h" encontrado en la ecuación del paso No. 3 y despejamos el valor de "h"	$99 = (\frac{3 + \frac{3}{4}h}{2})(h)(8)$ $99 = (\frac{6 + \frac{3}{4}h}{2})(h)(8)$ $99 = (\frac{3}{8}h + 3)(h)(8)$ $99 = (3h + 24)(h)$ $99 = 3h^2 + 24h$ $3h^2 + 24h - 99 = 0$
8	Resolviendo la ecuación cuadrática y hallando el valor de "h" por la ecuación de bieta o formula cuadrática:	$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(24) \pm \sqrt{(24)^2 - 4(3)(99)}}{2(3)}$ $h = \frac{-24 \pm 42}{6}$
9	Por lo tanto el nivel de agua "h", cuando el volumen es de 99 pies cúbicos es:	h = 3 pies

C	c) La altura del nivel de agua cuando el área del espejo de agua es de 30 pies cúbicos:		
10	Sabiendo que la forma del espejo de agua es:	b1	
11	Por lo tanto utilizamos la fórmula del área del rectángulo y sustituimos el valor de b_1 , encontrado en el paso No.	$A = 8(b_1)$ $30 = (8)(3 + \frac{3}{4}h)$ $30 = 24 + 6h$ $6 = 6h$	
12	Por lo tanto la altura del nivel de agua cuando el área del espejo de agua es de 30 pies cúbicos es:	h=1 pie	